1,227
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Excellent permittivity-temperature stability and reliability performance of ultra-thin Ba0.97Ca0.03TiO3-based MLCCs

, ORCID Icon, , , , , , , & show all
Pages 146-158 | Received 02 Nov 2022, Accepted 05 Jan 2023, Published online: 26 Jan 2023

References

  • Chang CY, Wang WN, Huang CY, et al. Effect of MgO and Y2O3 doping on the formation of core–shell structure in BaTiO3 ceramics. J Am Ceram Soc. 2013;96(1):2570–2576.
  • Berthelot R, Basly B, Buffiere S, et al. From core–shell BaTiO3@MgO to nanostructured low dielectric loss ceramics by spark plasma sintering. J Mater Chem C. 2014;2(20):683–690.
  • Liu Y, Cui B, Wang Y, et al. Core–shell structure and dielectric properties of Ba0.991Bi0.006TiO3@Nb2O5–Co3O4 Ceramics. J Am Ceram Soc. 2016;99(2):1664–1670.
  • Yoon SH, Randall CA, Hur KH. Effect of acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)-Doped BaTiO3 bulk ceramics: impedance analysis. J Am Ceram Soc. 2009;92(2):1758–1765.
  • Hong K, Lee TH, Suh JM. Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J Mater Chem C. 2019;7(3):9782–9802.
  • Mizuno Y, Hagiwara T, Chazono H. Effect of milling process on core-shell microstructure and electrical properties for BaTiO3-based Ni-MLCC. J Eur Ceram Soc. 2001;21(2):1649–1652.
  • Yoon SH, Kang SH, Kwon SH, et al. Resistance degradation behavior of Ca-doped BaTiO3. J Mater Res. 2010;25(3):2135–2142.
  • Krishna PSR, Pandey D, Tiwari VS. Effect of powder synthesis procedure on calcium site occupancies in barium calcium titanate: a Rietveld analysis. Appl Phys Lett. 1993;62(2):231–233.
  • Yang Y, Hao H, Zhang L, et al. Structure and enhanced dielectric temperature stability of BaTiO3-based ceramics by Ca ion B site-doping. Ceram Int. 2018;44(3):11109–11115.
  • Sharma P, Berwal N, Ahlawat N, et al. Study of structural, dielectric, ferroelectric and magnetic properties of vanadium doped BCT ceramics. Ceram Int. 2019;45(2):20368–20378.
  • Ouni IB, Chapron D, Aroui H. Ca doping in BaTiO3 crystal: effect on the Raman spectra and vibrational modes. J Appl Phys. 2017;121(4):114102.
  • Chen CS, Chou CC, Lin IN. Microstructures of X7R type base-metal-electrode BaTiO3 capacitor materials prepared by duplex-structured process. J Eur Ceram Soc. 2005;25(4):2743–2747.
  • Yoon SH, Park Y, Kim CH, et al. Effect of Ca incorporation on the dielectric nonlinear behavior of (Ba, Ca)TiO3 multi layer ceramic capacitors. Appl Phys Lett. 2014;105(6):242902.
  • Iwahori Y, Tanaka HM, Takata Y. Core/shell structure of ferroelectric (Ba0.94Ca0.06)TiO3 grains. J K Phys Soc. 2009;55(5):830–834.
  • Moriyoshi C, Takeda S, Magome E. Origin of Composition Variation of Ferroelectric Phase Transition Temperature in (Ba,Ca)TiO3 by Synchrotron Radiation Powder Diffraction. Jap J Appl Phys. 2013;52(8):09KF02.
  • Fu D, Itoh M, Koshihara S, et al. Anomalous phase diagram of ferroelectric (Ba,Ca) TiO3 single crystals with giant electromechanical response. Phys Rev Lett. 2008;100(2):227601.
  • Mitsui T, Westphal WB. X-Ray Studies of CaxBa1−xTiO3 and CaxSr1−xTi O3. Phys Rev Lett. 1961;124(2):1354.
  • Banno K, Koga T, Takeda T. Melanogenesis and natural hypopigmentation agents. T T Pub Ltd. 2009;388(3):225–228.
  • Yamamoto Y, Kawamura K, Sugimoto H, et al. Significant displacement of calcium and barium ions in ferroelectric (Ba0.9Ca0.1)TiO3 revealed by x-ray fluorescence holography. Appl Phys Lett. 2022;120(1):052905.
  • Sidorov TA. Structure of BaTiO3 phases is studied by comparing neutron diffraction and Raman spectroscopy data. Russ J Inorg Chem. 2011;56(1):1957–1966.
  • Smith MB, Page K, Siegrist T. Growth of 0.1 (Bi,Na)TiO3–0.9BaTiO3 epitaxial films by pulsed laser deposition and their electric properties. J Am Ceram Soc. 2018;130(5):6955–6963.
  • Perry CH, Hall DB. Temperature Dependence of the Raman Spectrum of BaTiO3. Phys Rev Lett. 1965;15(2):700.
  • Dobal PS, Dixit A, Katiyar RS. Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3–BaZrO3 system. J App Phys. 2001;89(2):8085–8091.
  • Wang CZ, Yu R, Krakauer H. Polarization dependence of Born effective charge and dielectric constant in KNbO3. Phys Rev B. 1996;54(2):11161.
  • Deluca M, Vasilescu CA, Ianculescu AC. Investigation of the composition-dependent properties of BaTi1−xZrxO3 ceramics prepared by the modified Pechini method. J Eur Ceram Soc. 2012;32(2):3551–3566.
  • Polotai AV, Yang GY, Dickey EC. Utilization of Multiple-Stage Sintering to Control Ni Electrode Continuity in Ultrathin Ni-BaTiO3 Multilayer Capacitors. J Am Ceram Soc. 2007;90(3):3811–3817.
  • Nakamura T, Yao T, Ikeda J, et al. Improvement of the Reliability of Dielectrics for MLCC. M S E. 2011;18(2):092007.
  • Yang G, Yue ZX, Sun TY, et al. Evaluation of residual stress in a multilayer ceramic capacitor and its effect on dielectric behaviors under applied DC bias field. J Am Ceram Soc. 2008;91(3):887–892.
  • Tian Z, Wang XH, Gong HL, et al. Core–shell structure in nanocrystalline modified BaTiO3 dielectric ceramics prepared by different sintering methods. J Am Ceram Soc. 2011;94(2):973–977.
  • Ogihara H, Randall CA, Trolier-Mckinstry S. High‐energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J Am Ceram Soc. 2010;92(4):1719–1724.
  • Ortega N, Kumar A, Scott JF, et al. Relaxor-ferroelectric superlattices: high energy density capacitors. J Phys B-Condens Mat. 2012;24(3):445901.
  • Jeon SC, Yoon BK, Kim KH. Effects of core/shell volumetric ratio on the dielectric-temperature behavior of BaTiO3. J Adv Ceram. 2014;3(5):76–82.
  • Iwahori Y, Tanaka H, Takata M. Core/shell structure of ferroelectric (Ba0.94Ca0.06) TiO3 grains. J K Phys Soc. 2009;55(3):830–834.
  • Molak A, Winiarski A, Szeremeta AZ, et al. Electrical features of ferroelectric (Ba0.83Ca0.17)TiO3 ceramics with diffused phase transition under pressure. J Alloy Compd. 2020;856(3):158216.
  • Palaimiene E, Macutkevic J, Banys J. Crossover from Ferroelectric to Relaxor Behavior in Ba1−x CaxTiO3(x= 0.17) System. Materials. 2020;13(3):2854.
  • Veerapandiyan VK, Khosravi S, Canu G. B-site vacancy induced Raman scattering in BaTiO3-based ferroelectric ceramics. J Eur Ceram Soc. 2020;40(4):4684–4688.
  • Lee S, Saw SH, Lee PCK. Schmidt, Computing plasma focus pinch current from total current measurement. Appl Phys Lett. 2008;92(4):111501.
  • Hong K, Lee TH, Suh JM, et al. Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J Mater Chem C. 2019;7(7):9782–9802.
  • Hoshina T, Takizawa K, Li J, et al. Domain size effect on dielectric properties of barium titanate ceramics. Jpn J Appl Phys. 2008;47(6):7607–7611.
  • Tutuncu G, Li B, Bowman K. Domain wall motion and electromechanical strain in lead-free piezoelectrics: insight from the model system (1-x)Ba(Zr0.2Ti0.8)O3-x (Ba0.7Ca0.3)TiO3 using in situ high-energy X-ray diffraction during application of electric fields. J Appl Phys. 2014;115(3):1153–1348.
  • Yoon SH, Park Y, Kim CH. Effect of Ca incorporation on the dielectric nonlinear behavior of (Ba,Ca)TiO3 multi layer ceramic capacitors. Appl Phys Lett. 2014;105(4):242902.
  • Levin I, Krayzman V, Woicik JC. Local-structure origins of the sustained Curie temperature in (Ba,Ca)TiO3 ferroelectrics. Appl Phys Lett. 2013;102(2):162906.
  • Nagayoshi M, Matsubara K, Fujikawa N. Analyses of microstructure at degraded local area in Ni-multilayer ceramic capacitors under highly accelerated life test. Jpn J Appl Phys. 2020;59:3.
  • Masuduzzaman M, Xie S, Chungv J. The origin of broad distribution of breakdown times in polycrystalline thin film dielectrics. Appl Phys Lett. 2012;101(3):153511.
  • Yoon SH, Kim SH, Kim DY. Correlation between I(current)-V(voltage) characteristics and thermally stimulated depolarization current of Mn-doped BaTiO3 multilayer ceramic capacitor. J Appl Phys. 2013;114(3):074102.
  • Sze SM, Ng KK. Physics of Semiconductor Devices. Johy Wiley & Sons. 2007;199(2):20–26.
  • Heidary DSB, Qu W, Randall CA. Electrical characterization and analysis of the degradation of electrode Schottky barriers in BaTiO3 dielectric materials due to hydrogen exposure. J Appl Phys. 2015;117(3):124104.
  • Yoon SH, Lim JB, Kim SH. Influence of Dy on the dielectric aging and thermally stimulated depolarization current in Dy and Mn-codoped BaTiO3 multilayer ceramic capacitor. J Mater Res. 2013;28(3):3252–3256.
  • Yoon SH, Lim JB, Kim SH, et al. Influence of Dy on the dielectric aging and thermally stimulated depolarization current in Dy and Mn-codoped BaTiO3 multilayer ceramic capacitor. Appl Phys Lett. 2013;103(2):042901.
  • Yoon SH, Randall CA, Hury KH. Correlation between resistance degradation and thermally stimulated depolarization current in acceptor (Mg)‐doped BaTiO3 submicrometer fine‐grain ceramics. J Am Ceram Soc. 2010;93(4):1950–1956.
  • Yoon SH, Randall CA, Hury KH. Effect of acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)‐doped BaTiO3 bulk ceramics: iIThermally stimulated depolarization current analysis. J Am Ceram Soc. 2010;92(3):1766–1772.
  • Kamel FE, Gonon P, Jomni F. Thermally stimulated currents in amorphous barium titanate thin films deposited by RF magnetron sputtering. J Appl Phys. 2006;100(2):054107.
  • Liu WY, Randall CA. Thermally stimulated relaxation in Fe‐doped SrTiO3 systems: single crystals. J Am Ceram Soc. 2008;91(5):3245–3250.