637
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Crystal structure and ion-exchange property of a lepidocrocite-like sodium titanate

, , , , , , & show all
Pages 170-177 | Received 16 Nov 2022, Accepted 24 Jan 2023, Published online: 14 Feb 2023

References

  • Schaak RE, Mallouk TE. Perovskites by Design: a toolbox of solid-state reactions. Chem Mater. 2002;14(4):1455–1471.
  • Sasaki T, Watanabe M, Michiue Y, et al. Preparation and acid-base properties of a protonated titanate with the lepidocrovite-like layer structure. Chem Mater. 1995;7(5):1001–1007.
  • Sasaki T, Ebina Y, Tanaka T, et al. Layer-by-layer assembly of Titania Nanosheet/Polycation composite film. Chem Mater. 2001;13(12):4661–4667.
  • Tanaka T, Ebina Y, Takada K, et al. Oversized Titania Nanosheet crystallites derived from flux-grown layered single crystals. Chem Mater. 2003;15(18):3564–3568.
  • Reid AF, Mumme W, Wadsley AD. A new class of compound M x+A x 3+ Ti 2− x O 4 (0.60 < x < 0.80) typified by Rb x Mn x Ti 2− x O 4. Acta Crystallogr B. 1968;24(9):1228–1233.
  • England WA, Birkett JE, Goodenough JB, et al. Ion exchange in the Csx[Ti2-x/2Mgx/2]O4 structure. J Solid State Chem. 1983;49(3):300–308.
  • Kumada N, Horiuchi O, Muto F, et al. A new layered type compound, HTaWO6*nH2O (n=0.5-1.5) Prepared from LiTaWO6 by Ion exchange reaction. Mater Res Bull. 1988;23(2):208–216.
  • Kumada N, Takeshita M, Muto F, et al. Ion exchange of HTaWO6*nH2O (n=0.5-1.5) with a layered structure. Mater Res Bull. 1988;23(7):1053–1060.
  • Kinomura N, Amano S, Kumada N. Intercalation of n-Alkylamines and n-Alkyldiamines into HTaWO6*nH2O. Solid State Ion. 1990;37(4):317–321.
  • Kinomura N, Kumada N. Intercalation of weak Lewis bases into HTaWO6*nH2O. Solid State Ion. 1992;51(1–2):1–5.
  • Kumada N, Fukasawa Y, Yoneskai Y. Ion-exchange reaction of protonated layer compounds with Bi3+ Ion. Clay Sci. 2006;12:331–335.
  • Shirpour M, Cabana J, Doeff M. Lepidocrocite-like layered titanate structures: new Lithium and sodium Ion intercalation anode materials. Chem Mater. 2014;26(8):2502–2512.
  • Markus IM, Engelke S, Shirpour M, et al. Experimental and Computational investigation of lepidocrocite Anodes for Sodium-Ion Batteries. Chem Mater. 2016;28(12):4284–4291.
  • Katogi A, Kubota K, Chihara K, et al. Synthesis and electrochemical performance of C-Base-Centered Lepidocrocite-like Titanates for Na-Ion batteries. ACS Appl. Energy Mater. 2018;1(8):3630–3635.
  • Reeves KG, Ma J, Fukunishi M, et al. Insights into Li +, Na +, and K +Intercalation in Lepidocrocite-Type Layered TiO 2 Structures. ACS Appl. Energy Mater. 2018;1(5):2078–2086.
  • Kawaguchi S, Takemoto M, Osaka K, et al. High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev Sci Instrum. 2017;88(8):085111.
  • Izumi F. Three-Dimensional MK Visualization in Powder Diffraction. Solid State Phenom. 2007;130:5–20.
  • Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011 Dec;44(6):1272–1276.
  • Nassau K, Shiever JW, Bernstein JL. Crystal growth and properties of mica‐like potassium niobates. J Electrochem Soc. 1969;116(3):348–352.
  • Roth RS, Parker HS, Brower WS. Crystal chemistry of lithium in octahedrally coordinated structures III. A new structure-type in the system K2O:Li2O:TiO2 (KxLixTi4-x/2O8). Mater Res Bull. 1973;8(3):327–332.
  • Sasaki T, Kooli F, Iida M, et al. A mixed alkali metal titanate with the lepidocrocite-like layered structure. preparation, crystal structure, protonic form, and acid-base intercalation properties. Chem Mater. 1998;10(12):4123–4128.
  • Rebbah H, Pannetier J, Raveau B. Localization of hydrogen in the layer oxide HTiNbO5. J Solid State Chem. 1982;41(1):57–62.
  • Tansel B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep Purif Technol. 2012;86:119–126.