207
Views
0
CrossRef citations to date
0
Altmetric
FULL LENGTH ARTICLE

In-situ formation of Zn-MOF coating on MgO/HA composite layer produced by plasma electrolytic oxidation on Mg-Sn-Mn-Ca alloy for orthopedic internal fixation devices

, , , & ORCID Icon
Received 15 Jan 2024, Accepted 25 Apr 2024, Published online: 06 May 2024

References

  • Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R Rep. 2014 Mar;77:1–34. doi: 10.1016/j.mser.2014.01.001
  • Sezer N, Evis Z, Kayhan SM, et al. Review of magnesium-based biomaterials and their applications. J Magnesium Alloys. 2018 Mar;6(1):23–43. doi: 10.1016/j.jma.2018.02.003
  • Radha R, Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications – a review. J Magnesium Alloys. 2017 Sep;5(3):286–312. doi: 10.1016/j.jma.2017.08.003
  • Radha R, Sreekanth D, Bharti N, et al. Mg-1Sn/Al2O3 biodegradable composites: effect of Al 2 O 3 addition on mechanical, in-vitro corrosion and bioactivity response. Mater Res Express. 2019 Aug;6(10):105411. doi: 10.1088/2053-1591/ab3b41
  • Radha R, Sreekanth D. Mechanical and corrosion behaviour of hydroxyapatite reinforced Mg-sn alloy composite by squeeze casting for biomedical applications. J Magnesium Alloys. 2020 Jun;8(2):452–460. doi: 10.1016/j.jma.2019.05.010
  • Rajendran R, Dondapati S. Insights of microstructural features and their effect on degradation and the in vitro bioactivity response of as-cast Mg-sn alloys for orthopedic implant applications. Materials. 2022 Sep;15(18):6327. doi: 10.3390/ma15186327
  • Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR, et al. Mechanical and bio-corrosion properties of quaternary Mg–ca–mn–zn alloys compared with binary Mg–ca alloys. Mater Des. 2014 Jan;53:283–292. doi: 10.1016/j.matdes.2013.06.055
  • Zhang E, Yang L, Xu J, et al. Microstructure, mechanical properties and bio-corrosion properties of Mg–si(–ca, Zn) alloy for biomedical application☆. Acta Biomater. 2010 May;6(5):1756–1762. doi: 10.1016/j.actbio.2009.11.024
  • Cihova M, Martinelli E, Schmutz P, et al. The role of zinc in the biocorrosion behavior of resorbable Mg‒zn‒ca alloys. Acta Biomater. 2019 Dec;100:398–414. doi: 10.1016/j.actbio.2019.09.021
  • Ali M, Elsherif M, Salih AE, et al. Surface modification and cytotoxicity of Mg-based bio-alloys: an overview of recent advances. J Alloys Compd. 2020 Jun;825:154140. doi: 10.1016/j.jallcom.2020.154140
  • Thakur A, Kumar A, Kaya S, et al. Recent advancements in surface modification, characterization and functionalization for enhancing the biocompatibility and corrosion resistance of biomedical implants. Coatings. 2022 Oct;12(10):1459. doi: 10.3390/coatings12101459
  • Fattah-Alhosseini A, Molaei M, Attarzadeh N, et al. On the enhanced antibacterial activity of plasma electrolytic oxidation (PEO) coatings that incorporate particles: a review. Ceram Int. 2020 Sep;46(13):20587–20607. doi: 10.1016/j.ceramint.2020.05.206
  • Sreekanth D, Rameshbabu N, Venkateswarlu K, et al. Effect of K2TiF6 and Na2B4O7 as electrolyte additives on pore morphology and corrosion properties of plasma electrolytic oxidation coatings on ZM21 magnesium alloy. Surf Coat Technol. 2013 May;222:31–37. doi: 10.1016/j.surfcoat.2013.01.056
  • Ly XN, Yang S. Influence of current mode on microstructure and corrosion behavior of micro-arc oxidation (MAO) biodegradable Mg-zn-ca alloy in Hank’s solution. Surf Coat Technol. 2019 Jan;358:331–339. doi: 10.1016/j.surfcoat.2018.11.040
  • Sandhyarani M, Rameshbabu N, Venkateswarlu K, et al. Surface morphology, corrosion resistance and in vitro bioactivity of P containing ZrO2 films formed on Zr by plasma electrolytic oxidation. J Alloys Compd. 2013 Mar;553:324–332. doi: 10.1016/j.jallcom.2012.11.147
  • Gnedenkov SV, Sinebryukhov SL, Mashtalyar DV, et al. Fabrication of coatings on the surface of magnesium alloy by plasma electrolytic oxidation using ZrO 2 and SiO 2 nanoparticles. J Nanomater. 2015;2015:1–12. doi: 10.1155/2015/154298
  • Bordbar-Khiabani A, Ebrahimi S, Yarmand B. In-vitro corrosion and bioactivity behavior of tailored calcium phosphate-containing zinc oxide coating prepared by plasma electrolytic oxidation. Corros Sci. 2020 Aug;173:108781. doi: 10.1016/j.corsci.2020.108781
  • Bordbar-Khiabani A, Yarmand B, Mozafari M. Effect of ZnO pore-sealing layer on anti-corrosion and in-vitro bioactivity behavior of plasma electrolytic oxidized AZ91 magnesium alloy. Mater Lett. 2020 Jan;258:126779. doi: 10.1016/j.matlet.2019.126779
  • Wei D, Zhou Y, Jia D, et al. Chemical treatment of TiO2-based coatings formed by plasma electrolytic oxidation in electrolyte containing nano-HA, calcium salts and phosphates for biomedical applications. Appl Surf Sci. 2008 Jan;254(6):1775–1782. doi: 10.1016/j.apsusc.2007.07.144
  • Zhang S, Pei X, Gao H, et al. Metal-organic framework-based nanomaterials for biomedical applications. Chin Chem Lett. 2020 May;31(5):1060–1070. doi: 10.1016/j.cclet.2019.11.036
  • Liu W, Yan Z, Zhang Z, et al. Bioactive and anti-corrosive bio-MOF-1 coating on magnesium alloy for bone repair application. J Alloys Compd. 2019 Jun;788:705–711. doi: 10.1016/j.jallcom.2019.02.281
  • Zhang M, Wang G, Wang D, et al. Ag@MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications. Int j biol macromol. 2021 Apr;175:481–494. doi: 10.1016/j.ijbiomac.2021.02.045
  • Telmenbayar L, Gopal Ramu A, Yang D, et al. Development of mechanically robust and anticorrosion slippery PEO coating with metal–organic framework (MOF) of magnesium alloy. Chem Eng J. 2023 Feb;458:141397. doi: 10.1016/j.cej.2023.141397
  • Sreekanth D, Rameshbabu N. Development and characterization of MgO/hydroxyapatite composite coating on AZ31 magnesium alloy by plasma electrolytic oxidation coupled with electrophoretic deposition. Mater Lett. 2012 Feb;68:439–442. doi: 10.1016/j.matlet.2011.11.025