173
Views
0
CrossRef citations to date
0
Altmetric
Invited Article

Modeling and preparation of additive-manufactured laser ceramics

, , , , , , & show all
Received 26 Feb 2024, Accepted 13 May 2024, Published online: 10 Jun 2024

References

  • Schawlow AL, Townes CH. Infrared and optical masers. Phys Rev. 1958;112(6):1940–1949. doi: 10.1103/PhysRev.112.1940
  • Maiman TH. Stimulated optical radiation in Ruby. Nature. 1960;187(4736):493–494. doi: 10.1038/187493a0
  • Liu H, Lin W, Hong M. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. Light Sci Appl. 2021;10(1):162. doi: 10.1038/s41377-021-00596-5
  • Naresh, Khatak P. Laser cutting technique: a literature review. Mater Today Proc. 2022;56:2484–2489. doi: 10.1016/j.matpr.2021.08.250
  • Han T, Nag A, Afsarimanesh N, et al. Laser-assisted printed flexible sensors: a review. Sensors. 2019;19(6):1462. doi: 10.3390/s19061462
  • Betti R. A milestone in fusion research is reached. Nat Rev Phys. 2023;5(1):6–8. doi: 10.1038/s42254-022-00547-y
  • Kobayashi J, Ogino A, Inouye S. Measurement of the variation of electron-to-proton mass ratio using ultracold molecules produced from laser-cooled atoms. Nat Commun. 2019;10(1):3771. doi: 10.1038/s41467-019-11761-1
  • Forsythe RC, Cox CP, Wilsey MK, et al. Pulsed laser in liquids made nanomaterials for catalysis. Chem Rev. 2021;121(13):7568–7637. doi: 10.1021/acs.chemrev.0c01069
  • Tsai C-T, Cheng C-H, Kuo H-C, et al. Toward high-speed visible laser lighting based optical wireless communications. Prog Quantum Electron. 2019;67:100225. doi: 10.1016/j.pquantelec.2019.100225
  • Carrasco-Casado A, Shiratama K, Trinh PV, et al. Development of a miniaturized laser-communication terminal for small satellites. Acta Astronaut. 2022;197:1–5. doi: 10.1016/j.actaastro.2022.05.011
  • Toyoshima M. Recent trends in space laser communications for small satellites and constellations. J Lightwave Technol. 2021;39(3):693–699. doi: 10.1109/JLT.2020.3009505
  • Lyu C, Zhan R. STOP model development and analysis of an optical collimation system for a tactical high-energy laser weapon. Appl Optics. 2021;60(13):3596–3603. doi: 10.1364/AO.419554
  • Bernatskyi A, Sokolovskyi M. History of military laser technology development in military applications. Hist Sci Technol. 2022;12(1):88–113. doi: 10.32703/2415-7422-2022-12-1-88-113
  • Wang J, Cao L, Zhang Y, et al. Effect of mass transfer channels on flexural strength of C/SiC composites fabricated by femtosecond laser assisted CVI method with optimized laser power. J Adv Ceram. 2021;10(2):227–236. doi: 10.1007/s40145-020-0433-2
  • Guo L, Xin H, Zhang Z, et al. Microstructure modification of Y2O3 stabilized ZrO2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance. J Adv Ceram. 2020;9(2):232–242. doi: 10.1007/s40145-020-0363-z
  • Liu H, Su H, Shen Z, et al. Formation mechanism and roles of oxygen vacancies in melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramic by laser 3D printing. J Adv Ceram. 2022;11(11):1751–1763. doi: 10.1007/s40145-022-0645-8
  • Chen Z, Li Z, Li J, et al. 3D printing of ceramics: a review. J Eur Ceram Soc. 2019;39(4):661–687. doi: 10.1016/j.jeurceramsoc.2018.11.013
  • Grossin D, Montón A, Navarrete-Segado P, et al. A review of additive manufacturing of ceramics by powder bed selective laser processing (sintering/melting): Calcium phosphate, silicon carbide, zirconia, alumina, and their composites. Open Ceramics. 2021;5:100073. doi: 10.1016/j.oceram.2021.100073
  • Tian F, Jiang N, Liu Y, et al. Fabrication and properties of multistage gradient doping Yb: YAG laser ceramics. J Am Ceram Soc. 2023;106(4):2309–2316. doi: 10.1111/jace.18913
  • Vajdi M, Sadegh Moghanlou F, Sharifianjazi F, et al. A review on the Comsol Multiphysics studies of heat transfer in advanced ceramics. J Of Compos And Compd. 2020;2(1):35–44. doi: 10.29252/jcc.2.1.5
  • Hatch S, Parsons W, Weagley R. Hot‐pressed polycrystalline CaF2: Dy2+ laser. Appl Phys Lett. 1964;5(8):153–154. doi: 10.1063/1.1754094
  • Greskovich C, Chernoch J. Polycrystalline ceramic lasers. J Appl Phys. 1973;44(10):4599–4606. doi: 10.1063/1.1662008
  • Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and optical properties of high‐performance polycrystalline Nd: YAG ceramics for solid‐state lasers. J Am Ceram Soc. 1995;78(4):1033–1040. doi: 10.1111/j.1151-2916.1995.tb08433.x
  • Ikesue A, Aung YL. Ceramic laser materials. Nat Photonics. 2008;2(12):721–727. doi: 10.1038/nphoton.2008.243
  • Li M, Hu H, Gao Q, et al. A 7.08-kW YAG/Nd: YAG/YAG composite ceramic slab laser with dual concentration doping. IEEE Photonics J. 2017;9(6):1–10. doi: 10.1109/JPHOT.2017.2780197
  • al’nshin My B. The contact section of powder compacts and sintered bodies, and the values of their mechanical properties related to the contact section. Soviet Powder Metall Metal Ceram. 1964;2(4):278–281. doi: 10.1007/BF00774032
  • Ge R. A new equation for powder compaction. Powder Metall Sci Technol. 1995;6:20–24.
  • Kawakita K, Lüdde K-H. Some considerations on powder compression equations. Powder Technol. 1971;4(2):61–68. doi: 10.1016/0032-5910(71)80001-3
  • Panelli R, Ambrozio Filho F. A study of a new phenomenological compacting equation. Powder Technol. 2001;114(1–3):255–261. doi: 10.1016/S0032-5910(00)00207-2
  • Lun-Fu AV, Bubenchikov AM, Bubenchikov MA, et al. Computational analysis of strain-induced effects on the dynamic properties of C60 in fullerite. Crystals. 2022;12(2):260. doi: 10.3390/cryst12020260
  • Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21(6):1087–1092. doi: 10.1063/1.1699114
  • Xie J, Feng M, Han D, et al. Gradient doping composite multi-segmented slab lasers design optimization. Opt Laser Technol. 2024;168:109826. doi: 10.1016/j.optlastec.2023.109826