166
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation of high-entropy nitride ceramics (TiVCrNbZr1-x)Ny by introducing nitrogen vacancies

, , , & ORCID Icon
Received 18 Feb 2024, Accepted 22 May 2024, Published online: 27 May 2024

References

  • Senkov O, Miller J, Miracle D, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun. 2015;6(1):6529. doi: 10.1038/ncomms7529
  • Xiaopeng W, Fantao K. Resent development in high-entropy alloys and other high-entropy materials. J Aeronaut Mater. 2019;39(6):1–19. doi: 10.11868/j.issn.1005-5053.2019.000170
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303. doi: 10.1002/adem.200300567
  • Murty BS, Yeh JW, Ranganathan S. A Brief History of Alloys and the Birth of High-Entropy Alloys. HEA. 2014:1–12. doi: 10.1016/B978-0-12-800251-3.00001-8
  • Rost CM, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun. 2015;6(1):8485. doi: 10.1038/ncomms9485
  • Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater. 2020;5(4):295–309. doi: 10.1038/s41578-019-0170-8
  • Wright AJ, Luo J. A step forward from high-entropy ceramics to compositionally complex ceramics: a new perspective. J Mater Sci. 2020;55(23):9812–9827. doi: 10.1007/s10853-020-04583-w
  • Chen T, Shun T, Yeh J, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Technol. 2004;188:193–200. doi: 10.1016/j.surfcoat.2004.08.023
  • Ren B, Liu Z, Shi L, et al. Structure and properties of (AlCrMnMoNiZrB0.1) Nx coatings prepared by reactive DC sputtering. Appl Surf Sci. 2011;257(16):7172–7178. doi: 10.1016/j.apsusc.2011.03.083
  • Feng X, Tang G, Ma X, et al. Characteristics of multi-element (ZrTanbtiW)n films prepared by magnetron sputtering and plasma based ion implantation. Nucl Instrum Methods Phys Res B. 2013;301:29–35. doi: 10.1016/j.nimb.2013.03.001
  • Sobol O, Andreev A, Gorban V, et al. Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the vacuum-arc method. Tech Phys Lett. 2012;38(7):616–619. doi: 10.1134/S1063785012070127
  • Jin T, Sang X, Unocic RR, et al. Mechanochemical-Assisted Synthesis of High-Entropy Metal Nitride via a Soft Urea Strategy. Adv Mater. 2018;30(23):1707512. doi: 10.1002/adma.201707512
  • Moskovskikh D, Vorotilo S, Buinevich V, et al. Extremely hard and tough high entropy nitride ceramics. Sci Rep. 2020;10(1):19874. doi: 10.1038/s41598-020-76945-y
  • Liu X, Lu Y, Xu Q, et al. Synthesis of (HfZrtinbta) N powders via nitride thermal reduction with soft mechano-chemical assistance. JAC. 2023;12(3):565–577. doi: 10.26599/JAC.2023.9220705
  • Hu X, Zhong S, Geng J, et al. In situ synthesis of PcBN composites from Sialon–TiN–TiB 2 binder and cBN under high temperature and pressure. Int J Appl Ceram Technol. 2023;20(4):2183–2193. doi: 10.1111/ijac.14362
  • Harrison RW, Lee WE, Jacobson N. Mechanism and kinetics of oxidation of ZrN ceramics. J Am Ceram Soc. 2015;98(7):2205–2213. doi: 10.1111/jace.13575
  • Qi Z, Wu Z, Liang H, et al. In situ and ex situ studies of microstructure evolution during high-temperature oxidation of ZrN hard coating. Scr Mater. 2015;97:9–12. doi: 10.1016/j.scriptamat.2014.10.024
  • Peng C, Tang H, He Y, et al. A novel non-stoichiometric medium-entropy carbide stabilized by anion vacancies. J Mater Sci Technol. 2020;51:161–166. doi: 10.1016/j.jmst.2020.02.049
  • Peng C, Gao X, Wang M, et al. Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity. Appl Phys Lett. 2019;114(1):011905. doi: 10.1063/1.5054954
  • Guemmaz M, Mosser A, Parlebas J-C. Electronic changes induced by vacancies on spectral and elastic properties of titanium carbides and nitrides. J Electron Spectros Relat Phenom. 2000;107(1):91–101. doi: 10.1016/S0368-2048(00)00091-8
  • Guemmaz M, Mosser A, Ahuja R, et al. Theoretical and experimental investigations on elastic properties of substoichiometric titanium nitrides: Influence of lattice vacancies. IJIM. 2001;3(8):1319–1321. doi: 10.1016/S1466-6049(01)00151-9
  • Xu S, Wang M, Qiao L, et al. Influence of nitrogen vacancy defects incorporation on densification behaviour of spark plasma sintered non-stoichiometric TiN1-x. Adv Appl Ceram. 2015;114(5):256–260. doi: 10.1179/1743676114Y.0000000216
  • Xu S, Wang M, Qiao L, et al. Enhancing the sintering ability of TiNx by introduction of nitrogen vacancy defects. Ceram Int. 2015;41(8):9514–9520. doi: 10.1016/j.ceramint.2015.04.009
  • Manna R, Mukhopadhyay NK, Sastry GVS. Strengthening Behavior of Bulk Ultra Fine Grained Aluminum Alloys. Mater Sci forum. 2012;710:241–246. doi: 10.4028/www.scientific.net/MSF.710.241
  • Gild J, Zhang Y, Harrington T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep. 2016;6(1):37946. doi: 10.1038/srep37946
  • Skala L, Capkova P. Nitrogen vacancy and chemical bonding in substoichiometric vanadium nitride. J Phys Condens Matter. 1990;2(42):8293. doi: 10.1088/0953-8984/2/42/007
  • Becher PF. Microstructural design of toughened ceramics. J Am Ceram Soc. 1991;74(2):255–269. doi: 10.1111/j.1151-2916.1991.tb06872.x
  • Evans AG, Faber KT. Toughening of ceramics by circumferential microcracking. J Am Ceram Soc. 1981;64(7):394–398. doi: 10.1111/j.1151-2916.1981.tb09877.x
  • Zhang G, Yue X, Jin Z, et al. In-situ synthesized TiB2 toughened SiC. J Eur Ceram Soc. 1996;16(4):409–412. doi: 10.1016/0955-2219(95)00116-6
  • Sneddon I, Elliot H. The opening of a Griffith crack under internal pressure. Q Appl Math. 1946;4(3):262–267. doi: 10.1090/qam/17161