150
Views
0
CrossRef citations to date
0
Altmetric
Research article

Effect of yttrium oxide addition on the microstructure and mechanical properties of WC–ni composites fabricated from recycled WC and Ni

ORCID Icon, , , &
Received 04 Mar 2024, Accepted 27 May 2024, Published online: 30 May 2024

References

  • Toth LE, Margrave JL. Transition metal carbides and nitrides. 1st ed. (NY) and London: Academic Press; 1971. p. 9–10.
  • Ettmayer P. Hardmetals and cermets. Annu Rev Mater Sci. 1989;19(1):145–164. doi: 10.1146/annurev.ms.19.080189.001045
  • Kieffer R R, Ettmayer P, Freundhofeier M. New sintered nitride and carbonitride hard metals. Powder Metall. 1971;25:1335–1342.
  • Holmstrom E E, Lizarraga R, Linder D. High entropy alloys: Substituting for cobalt in cutting edge technology. Appl Mater Today. 2018;12:322–329. doi: 10.1016/j.apmt.2018.07.001
  • Wang W, Jinke Y, Qijie Z. Co-doping effect on the martensitic transformation and magnetic properties of Ni49Mn39Sn12 alloy. J Magn Magn Mater. 2013;346:103–106. doi: 10.1016/j.jmmm.2013.07.025
  • Suzuki H, Hayashi K, Yamamoto T. Relations between some properties of Sintered WC-10%Ni alloy and its binder phase composition. J Jpn Soc Powder Metal. 1966;13(6):290–295. doi: 10.2497/jjspm.13.290
  • Suzuki H, Hayashi K, Terada O. Room-temperature transverse-rupture strength of WC-10%Ni cemented carbide. J Jpn Inst Metals. 1977;41(6):559–563. doi: 10.2320/jinstmet1952.41.6_559
  • Human AM, Exner HE. The relationship between electrochemical behaviour and in-service corrosion of WC based cemented carbides. Int J Refract Met Hard Mater. 1997;15(1–3):65–71. doi: 10.1016/S0263-4368(96)00014-5
  • Suzuki H, Terada O, Ike H. Mechanical properties of micro-grained WC-Ni cemented carbide. J Jpn Soc Powder Metal. 1995;42(11):1345–1349. doi: 10.2497/jjspm.42.1345
  • Jia K, Fischer TE, Gallois B. Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites. NanoStruct Mater. 1998;10(5):875–891. doi: 10.1016/S0965-9773(98)00123-8
  • Silva EN, Santos AAA, Nascimento RM. Investigation of characteristics and properties of spark plasma sintered ultrafine WC-6.4Fe3.6Ni alloy as potential alternative WC-Co hard metals. Int J Refract Met Hard Mater. 2021;101:105669. doi: 10.1016/j.ijrmhm.2021.105669
  • Walbrühl M, Linder D, Agren J. Diffusion modeling in cemented carbides: solubility assessment for Co, Fe and Ni binder systems. Int J Refract Met Hard Mater. 2017;68:41–48. doi: 10.1016/j.ijrmhm.2017.06.006
  • Steinlechner R, Calderon R, Koch T. A study on WC-Ni cemented carbides: constitution, alloy compositions and properties, including corrosion behaviour. Int J Refract Met Hard Mater. 2022;103:105750. doi: 10.1016/j.ijrmhm.2021.105750
  • Almond EA, Roebuck B. Identification of optimum binder phase compositions for improved WC hard metals. Mater Sci Eng A. 1988;105(106):237–248. doi: 10.1016/0025-5416(88)90502-2
  • Zhang X, Zhou J, Lin N. Effects of Ni addition and cyclic sintering on microstructure and mechanical properties of coarse-grained WC–10Co cemented carbides. Int J Refract Met Hard Mater. 2016;57:64–69. doi: 10.1016/j.ijrmhm.2016.02.008
  • Jiang H, Tong J, Zhan Z. Comparative study on the densification, microstructure and properties of WC-10(Ni, Ni/Co) cemented carbides using electroless plated and coprecipitated powders. Mater. 2023;16(5):1977. doi: 10.3390/ma16051977
  • Gonzalez R, Echeberria J, Sanchez JM. WC-(Fe,ni,c) hardmetals with improved toughness through isothermal heat treatments. J Mater Sci. 1995;30(13):3435–3439. doi: 10.1007/BF00349891
  • Rocha AMF, Bastos AC, Cardoso JP. Corrosion behaviour of WC hardmetals with nickel-based binders. Corros Sci. 2019;147:384–393. doi: 10.1016/j.corsci.2018.11.015
  • Santos RF, Rocha AMF, Bastos AC. Microstructural characterization and corrosion resistance of WC-Ni-Cr-Mo composite – The effect of Mo. Int J Refract Met H. 2020;86:105090. doi: 10.1016/j.ijrmhm.2019.105090
  • Li G, Peng Y, Yan L. Effects of Cr concentration on the microstructure and properties of WC-Ni cemented carbides. J Mater Res Technol. 2020;9(1):902–907. doi: 10.1016/j.jmrt.2019.11.030
  • Walbruhl M, Linder D, Agren J. Alternative Ni-based cemented carbide binder – Hardness characterization by nano-indentation and focused ion beam. Int J Refract Met H. 2018;73:204–209. doi: 10.1016/j.ijrmhm.2018.02.017
  • Walbruhl M, Linder D, Agren J. Diffusion modelling in cemented carbides: Solubility assessment for Co, Fe and Ni binder systems. Int J Refract Met H. 2017;68:41–48. doi: 10.1016/j.ijrmhm.2017.06.006
  • Pollock CB, Stadelmaier HH. The eta carbides in the Fe−W−C and Co−W−C systems. Metall Trans. 1970;1(4):767–770. doi: 10.1007/BF02811752
  • Guillermet AF. Thermodynamic properties of the Co-W-C system. Trans A. 1989;20(5):935–956. doi: 10.1007/BF02651660
  • Cho KH, Lee JW, Chung IS. A study on the formation of anomalous large WC grain and the eta phase, mater. Sci Eng A. 1996;209(1–2):298–301. doi: 10.1016/0921-5093(95)10104-7
  • Formisano A, Minutolo FC, Caraviello A. Influence of eta-phase on wear behavior of WC-Co carbides. Adv Tribol. 2016;2016:1–6. doi: 10.1155/2016/5063274
  • Eso O, Fang ZZ, Griffo A. Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC–co. Int J Refract Met Hard Mater. 2007;25(4):286–292. doi: 10.1016/j.ijrmhm.2006.07.002
  • Kwon H, Shin J. Preparation and characterization of tungsten carbide using products of hard metal sludge recycling process. Resour Recycl. 2022;31(4):19–25. doi: 10.7844/kirr.2022.31.4.19
  • Shetty DK, Wright IG, Mincer PN. Indentation fracture of WC-Co cermets. J Mater Sci. 1985;20(5):1873–1882. doi: 10.1007/BF00555296
  • Kwon H, Suh CY, Kim W. Microstructure and mechanical properties of (Ti,w)c–Ni cermet prepared using a nano-sized TiC–WC powder mixture. J Alloys Compd. 2015;639:21–26. doi: 10.1016/j.jallcom.2015.03.115
  • Akesson L. Science of Hard Materials. (NY): Springer; 1983. p. 71–82.
  • Park S, Kang S. Toughened ultra-fine (Ti,w)(cn)–Ni cermets. Scripta Mater. 2005;52(2):129–133. doi: 10.1016/j.scriptamat.2004.09.017