201
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Design-based learning to facilitate secondary students’ understanding of pulleys

ORCID Icon, &
Pages 26-37 | Received 01 May 2021, Accepted 09 Apr 2022, Published online: 20 Apr 2022

References

  • Allen, M. 2014. Misconceptions in Primary Science. Maidenhead: Open University.
  • Antink-Meyer, A., and R. A. Brown. 2019. “Nature of Engineering Knowledge: An Articulation for Science Learners with Nature of Science Understandings.” Science and Education 28 (3–5): 539–559. doi:10.1007/s11191-019-00038-0.
  • Apedoe, X. S., B. Reynolds, M. R. Ellefson, and C. D. Schunn. 2008. “Bringing Engineering Design into High School Science Classrooms: The Heating/cooling Unit.” Journal of Science Education and Technology 17 (5): 454–465. doi:10.1007/s10956-008-9114-6.
  • Apedoe, X. S., and C. D. Schunn. 2013. “Strategies for Success: Uncovering What Makes Students Successful in Design and Learning.” Instructional Science 41 (4): 773–791. doi:10.1007/s11251-012-9251-4.
  • Blueringmedia. (2019). “Science Experiment on Force and Motion with Pulley Illustration. [Photograph].” iStock. https://www.istockphoto.com/vector/science-experiment-on-force-and-motion-with-pulley-gm1187858388-335733100
  • Bussey, T. J., M. Orgill, and K. J. Crippen. 2013. “Variation Theory: A Theory of Learning and A Useful Theoretical Framework for Chemical Education Research.” Chemistry Education Research and Practice 14 (1): 1–22. doi:10.1039/C2RP20145C.
  • Chase, C. C., L. Malkiewich, and A. S. Kumar. 2019. “Learning to Notice Science Concepts in Engineering Activities and Transfer Situations.” Science Education 103 (2): 440–471. doi:10.1002/sce.21496.
  • Chiang, I.-C. A., R. S. Jhangiani, and P. C. Price. 2015. Research Methods in Psychology. 2nd Canadian ed. Victoria, B.C: BCcampus.
  • Chini, J. J. 2006. Comparing the Scaffolding Provided by Physical and Virtual Manipulatives for Students’ Understanding of Simple Machines. Kansas: Kansas State University.
  • Chini, J. J., A. Madsen, E. Gire, N. S. Rebello, and S. Puntambekar. 2012. “Exploration of Factors that Affect the Comparative Effectiveness of Physical and Virtual Manipulatives in an Undergraduate Laboratory.” Physical Review Special Topics – Physics Education Research 8 (1): 010113. doi:10.1103/PhysRevSTPER.8.010113.
  • Chinn, C. A., and B. A. Malhotra. 2002. “Children’s Responses to Anomalous Scientific Data: How Is Conceptual Change Impeded?” Journal of Educational Psychology 94 (2): 327–343. doi:10.1037/0022-0663.94.2.327.
  • Chusinkunawut, K., C. Henderson, K. Nugultham, T. Wannagatesiri, and W. Fakcharoenphol. 2021. “Design-based Science with Communication Scaffolding Results in Productive Conversations and Improved Learning for Secondary Students.” Research in Science Education 51 (4): 1123–1140. doi:10.1007/s11165-020-09926-w.
  • Colettam, V. P., and J. J. Steinert. 2020. “Why Normalized Gain Should Continue to Be Used in Analyzing Preinstruction and Postinstruction Scores on Concept Inventories.” Physical Review Physics Education Research 16 (1): 010108. doi:10.1103/PhysRevPhysEducRes.16.010108.
  • Dankenbring, C., and B. M. Capobianco. 2016. “Examining Elementary School Students’ Mental Models of Sun-Earth Relationships as a Result of Engaging in Engineering Design.” International Journal of Science and Mathematics Education 14 (5): 825–845. doi:10.1007/s10763-015-9626-5.
  • The Design-Based Research Collective. 2003. “Design-based Research: An Emerging Paradigm for Educational Inquiry.” Educational Researcher 32 (1): 5–8. doi:10.3102/0013189X032001005.
  • Driver, R., J. Leach, P. Scott, and C. Wood-Robinson. 1994. “Young People’s Understanding of Science Concepts: Implications of Cross-age Studies for Curriculum Planning.” Studies in Science Education 24 (1): 75–100. doi:10.1080/03057269408560040.
  • Fortus, D., R. C. Dershimer, J. Krajcik, R. W. Marx, and R. Mamlok-Naaman. 2004. “Design-based Science and Student Learning.” Journal of Research in Science Teaching 41 (10): 1018–1110. doi:10.1002/tea.20040.
  • Gire, E., A. Carmichael, J. J. Chini, A. Rouinfar, S. Rebello, G. Smith, and S. Puntambekar (2010). “The Effects of Physical and Virtual Manipulatives on Students’ Conceptual Learning about Pulleys.” Proceedings of the 9th International Conference of the Learning Sciences. (pp.937–943). Chicago: International Society of the Learning Sciences.https://dl.acm.org/doi/10.5555/1854360.1854480
  • Hake, R. R. 1998. “Interactive-engagement versus Traditional Methods: A Six-thousand-student Survey of Mechanics Test Data for Introductory Physics Course.” American Journal of Physics 66 (1): 64–74. doi:10.1119/1.18809.
  • Hakkarainen, O., and M. Ahtee. 2005. “Pupils’ Mental Models of a Pulley in Balance.” Journal of Baltic Science Education 2 (8): 26–34.
  • Institute for the Promotion of Teaching Science and Technology. (2014). Materials and activities. http://www.stemedthailand.org/?page_id=29
  • Institute for the Promotion of Teaching Science and Technology. (2015). Basic knowledge about STEM education. http://www.stemedthailand.org/wp-content/uploads/2015/03/newIntro-to-STEM.pdf
  • Kelly, T. R. and J. G. Knowles . 2016. “A Conceptual Framework of Integrated STEM Education.” International Journal of STEM Education 3 (11). doi:10.1186/s40594-016-0046-z.
  • Kolodner, J. L., P. J. Camp, C. D. Crismond, B. Fasse, J. Gray, J. Holbrook, S. Puntambekar, and M. Ryan. 2003. “Problem-based Learning Meets Case-based Reasoning in the Middle-school Science Classroom: Putting Learning by designTM into Practice.” The Journal of the Learning Sciences 12 (4): 495–547. doi:10.1207/S15327809JLS1204_2.
  • Korur, F., G. Efe, F. Erdogan, and B. Tunc. 2017. “Effects of Toy Crane Design-based Learning on Simple Machines.” International Journal of Science and Mathematics Education 15 (2): 251–271. doi:10.1007/s10763-015-9688-4.
  • Ladachart, L., W. Phothong, N. Suaklay, and L. Ladachart. 2020. “Thai Elementary Science Teachers’ Images of “Engineer(s)” at Work.” Journal of Science Teacher Education 31 (6): 631–653. doi:10.1080/1046560X.2020.1743563.
  • Lewis, T. 2006. “Design and Inquiry: Bases for an Accommodation between Science and Technology Education in the Curriculum?” Journal of Research in Science Teaching 43 (3): 255–281. doi:10.1002/tea.20111.
  • Li, Y., K. Wang, Y. Xiao, and E. Froyd. 2020. “Research and Trends in STEM Education: A Systematic Review of Journal Publications.” International Journal of STEM Education 7 (11). doi:10.1186/s40594-020-00207-6.
  • Malkiewich, L. J., and C. C. Chase. 2019. “Focusing Processes: Potential Pathways for Transfer of Science Concepts from an Engineering Task.” International Journal of Science Education 41 (11): 1475–1495. doi:10.1080/09500693.2019.1613583.
  • Marton, F. 2015. Necessary Conditions of Learning. New York: Routledge Falmer. doi:10.4324/9781315816876.
  • Marton, F., and S. Booth. 1997. Learning and Awareness. New York: Routledge Falmer. doi:10.4324/9780203053690.
  • Marton, F., and M. F. Pang. 2006. “On Some Necessary Conditions of Learning.” The Journal of the Learning Sciences 15 (2): 193–220. doi:10.1207/s15327809jls1502_2.
  • Marton, F., and A. B. M. Tsui. 2004. Classroom Discourse and the Space of Learning. New Jersey: Erlbaum. doi:10.4324/9781410609762.
  • Mehalik, M. M., Y. Doppelt, and C. D. Schuun. 2008. “Middle-school Science through Design-based Learning versus Scripted Inquiry: Better Overall Science Concept Learning and Equity Gap Reduction.” Journal of Engineering Education 97 (1): 71–85. doi:10.1002/j.2168-9830.2008.tb00955.x.
  • Morgan, G. A., N. L. Leech, G. W. Gloeckner, and K. C. Barrett. 2013. IBM SPSS for Introductory Statistics: Use and Interpretation. New York: Routledge. doi:10.4324/9780203127315.
  • Myneni, L. S., and N. H. Narayanan (2012). “ViPS: An Intelligent Tutoring System for Exploring and Learning Physics through Simple Machines.” Proceedings of the 4th International Conference on Computer Supported Education. (pp.73–82). Porto: SCITEPRESS. doi:10.5220/0003924700730082.
  • Nissen, J. M., R. M. Talbot, A. N. Thompson, and B. V. Dusen. 2018. “Comparison of Normalized Gain and Cohen’s D for Analyzing Gains on Concept Inventories.” Physical Review Physics Education Research 14 (1): 010115. doi:10.1103/PhysRevPhysEducRes.14.010115.
  • Pleasants, J., and J. K. Olson. 2019. “What Is Engineering? Elaborating the Nature of Engineering for K-12 Education.” Science Education 103 (1): 145–166. doi:10.1002/sce.21483.
  • Promboon, S., F. N. Finley, and K. Kaweekijmanee. 2018. “The Evolution and Current Status of STEM Education in Thailand: Policy Directions and Recommendations.” In Education in Thailand: An Old Elephant in Search of a New Mahout, edited by G. W. Fry, 423–459. Singapore: Springer. doi:10.1007/978-981-10-7857-6_17.
  • Quinn, C. M., J. W. Reid, and G. E. Gardner. 2020. “S + T + M = E as a Convergent Model for the Nature of STEM.” Science and Education 29 (4): 881–898. doi:10.1007/s11191-020-00130-w.
  • Ross, B., and H. Munby. 1991. “Concept Mapping and Misconceptions: A Study of High-school Students’ Understandings of Acids and Bases.” International Journal of Science Education 13 (1): 11–23. doi:10.1080/0950069910130102.
  • Schauble, L., L. E. Klopfer, and K. Raghavan. 1991. “Students‘ Transition from an Engineering Model to a Science Model of Experimentation.” Journal of Research in Science Teaching 28 (9): 859–882.
  • Schnittka, C., and R. Bell. 2011. “Engineering Design and Conceptual Change in Science: Addressing Thermal Energy and Heat Transfer in Eighth Grade.” International Journal of Science Education 13 (1): 1861–1887. doi:10.1080/09500693.2010.529177.
  • Schut, A., R. Klapwijk, M. Gielen, F. van Doorn, and M. de Vries. 2020. “Uncovering Early Indicators of Fixation during the Concept Development State of Children’s Design Processes.” International Journal of Technology and Design Education 30 (5): 951–972. doi:10.1007/s10798-019-09528-2.
  • Smith, J. P., A. A. diSessa, and J. Roschelle. 1993. “Misconceptions Reconceived: A Constructivist Analysis of Knowledge in Transition.” The Journal of the Learning Sciences 3 (2): 115–163. doi:10.1207/s15327809jls0302_1.
  • Sullivan, S., D. Gnesdilow, S. Puntambekar, and J.-S. Kim. 2017. “Middle School Students’ Learning of Mechanics Concepts through Engagement in Different Sequences of Physical and Virtual Experiments.” International Journal of Science Education 39 (12): 1573–1600. doi:10.1080/09500693.2017.1341668.
  • Tekbiyik, A. 2015. “The Real Life Application of Pulleys in a Competitive Environment.” Teaching Science 61 (1): 18–26.
  • Ward, L., S. Lyden, N. Fitzallen, and B. L. Barra. 2015. “Using Engineering Activities to Engage Middle School Students in Physics and Biology.” Australasian Journal of Engineering Education 20 (2): 145–156. doi:10.1080/22054952.2015.1130092.
  • Wendell, K. B., and C. Rogers. 2013. “Engineering Design-based Science, Science Content Performance, and Science Attitudes in Elementary School.” Journal of Engineering Education 102 (4): 513–540. doi:10.1002/jee.20026.
  • Yager, R. E. 1991. “The Constructivist Learning Model: Towards Real Reform in Science Education.” The Science Teacher 58 (6): 52–57.
  • Yu, C. 2021. “Threats to validity of research design.“ http://www.creative-wisdom.com/teaching/WBI/threat.shtml

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.