1,157
Views
3
CrossRef citations to date
0
Altmetric
Articles

Exonic sequencing identifies TLR1 genetic variation associated with mortality in Thais with melioidosis

ORCID Icon, , , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 282-290 | Received 05 Nov 2018, Accepted 22 Jan 2019, Published online: 19 Feb 2019

References

  • Kanoksil M, Jatapai A, Peacock SJ, et al. Epidemiology, microbiology and mortality associated with community-acquired bacteremia in northeast Thailand: a multicenter surveillance study. PLoS One. 2013;8. doi: 10.1371/annotation/e199ebcc-0bc1-4be1-ad91-ad2a8c0c9382
  • Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N, et al. Increasing incidence of human melioidosis in northeast Thailand. Am J Trop Med Hyg. 2010;82:1113–1117. doi: 10.4269/ajtmh.2010.10-0038
  • Chewapreecha C, Holden TG, Vehkala M, et al. Global and regional dissemination and evolution of Burkholderia pseudomallei. Nat Microbiol. 2017;2:1–8. doi: 10.1038/nmicrobiol.2016.263
  • Limmathurotsakul D, Golding N, Dance DB, et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol. 2016;1:6–10. doi: 10.1038/nmicrobiol.2015.8
  • Currie BJ, Ward L, Cheng AC. The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year darwin prospective study. PLoS Negl Trop Dis. 2010;4. doi: 10.1371/journal.pntd.0000900
  • Wiersinga WJ, Currie BJ, Peacock SJ. Melioidosis. N Engl J Med. 2012;367:1035–1044. doi: 10.1056/NEJMra1204699
  • Lauw FN, Simpson AJH, Prins JM, et al. Elevated plasma concentrations of interferon (IFN)–γ and the IFN-γ–inducing cytokines interleukin (IL)–18, IL-12, and IL-15 in severe melioidosis. J Infect Dis. 1999;180:1878–1885. doi: 10.1086/315155
  • Friedland JS, Suputtamongkol Y, Remick DG, et al. Prolonged elevation of interleukin-8 and interleukin-6 concentrations in plasma and of leukocyte interleukin-8 mRNA levels during septicemic and localized Pseudomonas pseudomallei infection. Infect Immun. 1992;60:2402–2408.
  • Krishnananthasivam S, Sathkumara H, Corea E, et al. Gene expression profile of human cytokines in response to Burkholderia pseudomallei infection. mSphere. 2017;2:e00121–17. doi: 10.1128/mSphere.00121-17
  • Simpson AJH, Smith MD, Weverling GJ, et al. Prognostic value of cytokine concentrations (tumor necrosis factor–α, interleukin-6, and interleukin-10) and clinical parameters in severe melioidosis. J Infect Dis. 2000;181:621–625. doi: 10.1086/315271
  • West TE, Ernst RK, Jansson-Hutson MJ, et al. Activation of toll-like receptors by Burkholderia pseudomallei. BMC Immunol. 2008;9:1–10. doi: 10.1186/1471-2172-9-46
  • West TE, Hawn TR, Skerrett SJ. Toll-like receptor signaling in airborne Burkholderia thailandensis infection. Infect Immun. 2009;77:5612–5622. doi: 10.1128/IAI.00618-09
  • Sengyee S, Yoon SH, Paksanont S, et al. Comprehensive analysis of clinical Burkholderia pseudomallei isolates demonstrates conservation of unique lipid a structure and TLR4-dependent innate immune activation. PLoS Negl Trop Dis. 2018:1–24. doi: 10.1371/journal.pntd.0006287
  • West TE, Chantratita N, Chierakul W, et al. Impaired TLR5 functionality is associated with survival in melioidosis. J Immunol. 2013;190:3373–3379. doi: 10.4049/jimmunol.1202974
  • West TE, Myers ND, Chantratita N, et al. NLRC4 and TLR5 each contribute to host defense in respiratory melioidosis. PLoS Negl Trop Dis. 2014;8:1–9. doi: 10.1371/journal.pntd.0003178
  • West TE, Chierakul W, Chantratita N, et al. Toll-like receptor 4 region genetic variants are associated with susceptibility to melioidosis. Genes Immun. 2012;13:38–46. doi: 10.1038/gene.2011.49
  • Chaichana P, Chantratita N, Brod F, et al. A nonsense mutation in TLR5 is associated with survival and reduced IL-10 and TNF-α levels in human melioidosis. PLoS Negl Trop Dis. 2017;11:1–14. doi: 10.1371/journal.pntd.0005587
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11:373–384. doi: 10.1038/ni.1863
  • Hahn WO, Harju-Baker S, Erdman LK, et al. A common TLR1 polymorphism is associated with higher parasitaemia in a Southeast Asian population with Plasmodium falciparum malaria. Malar J. 2016;15:1–7. doi: 10.1186/s12936-015-1071-y
  • Manning L, Cutts J, Stanisic DI, et al. A toll-like receptor-1 variant and its characteristic cellular phenotype is associated with severe malaria in Papua New Guinean children. Genes Immun. 2016;17:52–59. doi: 10.1038/gene.2015.50
  • Tongtawee T, Bartpho T, Kaewpitoon S, et al. Genetic polymorphisms in TLR1, TLR2, TLR4, and TLR10 of helicobacter pylori-associated gastritis: a prospective cross-sectional study in Thailand. Eur J Cancer Prev. 2017:118–123. doi: 10.1097/CEJ.0000000000000347
  • Yang CA, Scheibenbogen C, Bauer S, et al. A frequent toll-like receptor 1 gene polymorphism affects nk- and t-cell ifn-γ production and is associated with helicobacter pylori-induced gastric disease. Helicobacter. 2013;18:13–21. doi: 10.1111/hel.12001
  • Wurfel MM, Gordon AC, Holden TD, et al. Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med. 2008;178:710–720. doi: 10.1164/rccm.200803-462OC
  • Whitmore LC, Hook JS, Philiph AR, et al. A common genetic variant in TLR1 enhances human neutrophil priming and impacts length of intensive care stay in pediatric sepsis. J Immunol. 2016;196:1376–1386. doi: 10.4049/jimmunol.1500856
  • Chantratita N, Tandhavanant S, Myers ND, et al. Common TLR1 genetic variation is not associated with death from melioidosis, a common cause of sepsis in rural Thailand. PLoS One. 2014;9. doi: 10.1371/journal.pone.0083285
  • McLaren CE, Emond MJ, Subramaniam VN, et al. Exome sequencing in HFE C282Y homozygous men with extreme phenotypes identifies a GNPAT variant associated with severe iron overload. Hepatology. 2015;62:429–439. doi: 10.1002/hep.27711
  • Emond MJ, Louie T, Emerson J, et al. Exome sequencing of phenotypic extremes identifies CAV2 and TMC6 as interacting modifiers of chronic pseudomonas aeruginosa infection in cystic fibrosis. PLoS Genet. 2015;11:1–20.
  • Mackelprang RD, Bamshad MJ, Chong JX, et al. Whole genome sequencing of extreme phenotypes identifies variants in CD101 and UBE2V1 associated with increased risk of sexually acquired HIV-1. PLoS Pathog. 2017;13:1–31. doi: 10.1371/journal.ppat.1006703
  • McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect predictor. Genome Biol. 2016;17:1–14. doi: 10.1186/s13059-016-0974-4
  • Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nat. 2015;526:68–74. doi: 10.1038/nature15393
  • Wiersinga WJ, van der Poll T. Immunity to Burkholderia pseudomallei. Curr Opin Infect Dis. 2009;22:102–108. doi: 10.1097/QCO.0b013e328322e727
  • Zerbino DR, Achuthan P, Akanni W, et al. Ensembl 2018. Nucleic Acids Res. 2018;46:D754–D761. doi: 10.1093/nar/gkx1098
  • Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nat. 2016;536:285–291. doi: 10.1038/nature19057
  • Peng W, Chen H, Zhao Z, et al. TLR1 polymorphisms are significantly associated with the occurrence, presentation and drug-adverse reactions of tuberculosis in Western Chinese adults. Oncotarget. 2018;9:1691–1704.
  • Ben-Ali M, Corre B, Manry J, et al. Functional characterization of naturally occurring genetic variants in the human TLR1-2-6 gene family. Hum Mutat. 2011;32:643–652. doi: 10.1002/humu.21486
  • Cingolani P, Platts A, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92. doi: 10.4161/fly.19695
  • Misch EA, Macdonald M, Ranjit C, et al. Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction. PLoS Negl Trop Dis. 2008;2. doi: 10.1371/journal.pntd.0000231
  • Mikacenic C, Schneider A, Radella F, et al. Cutting edge: genetic variation in TLR1 Is associated with Pam3 CSK4-induced effector T cell resistance to regulatory T cell suppression. J Immunol. 2014;193:5786–5790. doi: 10.4049/jimmunol.1401185
  • Thompson CM, Holden TD, Rona G, et al. Toll-like receptor 1 polymorphisms and associated outcomes in sepsis after traumatic injury. Ann Surg. 2014;259:179–185. doi: 10.1097/SLA.0b013e31828538e8
  • Heffelfinger C, Pakstis AJ, Speed WC, et al. Haplotype structure and positive selection at TLR1. Eur J Hum Genet. 2014;22:551–557. doi: 10.1038/ejhg.2013.194
  • Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45:486–552. doi: 10.1097/CCM.0000000000002255
  • Teparrukkul P, Hantrakun V, Day NPJ, et al. Management and outcomes of severe dengue patients presenting with sepsis in a tropical country. PLoS One. 2017;12:e0176233–13. doi: 10.1371/journal.pone.0176233
  • Rudd KE, Seymour CW, Aluisio AR, et al. Association of the quick sequential (sepsis-related) organ failure assessment (qSOFA) score with excess hospital mortality in adults with suspected infection in low- and middle-income countries. J Am Med Assoc. 2018;319:2202–2211. doi: 10.1001/jama.2018.6229
  • Wu MC, Lee S, Cai T, et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011;89:82–93. doi: 10.1016/j.ajhg.2011.05.029
  • Ionita-Laza I, Lee S, Makarov V, et al. Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet. 2013;92:841–853. doi: 10.1016/j.ajhg.2013.04.015