1,957
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Evolution and transmission of a conjugative plasmid encoding both ciprofloxacin and ceftriaxone resistance in Salmonella

, &
Pages 396-403 | Received 21 Aug 2018, Accepted 29 Jan 2019, Published online: 21 Mar 2019

References

  • Gomez TM, Motarjemi Y, Miyagawa S, et al. Foodborne salmonellosis. World Health Stat Q. 1997;50:81–89.
  • Hohmann EL. Nontyphoidal salmonellosis. Clin Infect Dis. 2001;32:263–269. DOI:10.1086/318457.
  • Multidrug-resistant Salmonella serotype Typhimurium–United States, 1996. MMWR (Morbidity and Mortality Weekly Report). 1997, vol. 46, p. 308-310.
  • Markogiannakis A, Tassios PT, Lambiri M, et al. Multiple clones within multidrug-resistant Salmonella enterica serotype Typhimurium phage type DT104. The Greek Nontyphoidal Salmonella Study Group. J Clin Microbiol. 2000;38:1269–1271.
  • Glynn MK, Bopp C, Dewitt W, et al. Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the United States. N Engl J Med. 1998;338:1333–1339. DOI:10.1056/NEJM199805073381901.
  • Leekitcharoenphon P, Hendriksen RS, Le Hello S, et al. Global genomic epidemiology of Salmonella enterica Serovar Typhimurium DT104. Appl Environ Microbiol. 2016;82:2516–2526. DOI:10.1128/AEM.03821-15.
  • Zhao S, Blickenstaff K, Glenn A, et al. beta-Lactam resistance in salmonella strains isolated from retail meats in the United States by the National Antimicrobial Resistance Monitoring System between 2002 and 2006. Appl Environ Microbiol. 2009;75:7624–7630. DOI:10.1128/AEM.01158-09.
  • NARMS. National Antimicrobial Resistance Monitoring System (NARMS): 2014 Human isolates surveillance report; 2014. http://www.cdc.gov/narms/pdf/2014-annual-report-narms-508c.pdf.
  • Wong MH, Yan M, Chan EW, et al. Emergence of clinical Salmonella enterica serovar Typhimurium isolates with concurrent resistance to ciprofloxacin, ceftriaxone, and azithromycin. Antimicrob Agents Chemother. 2014;58:3752–3756. DOI:10.1128/AAC.02770-13.
  • Ho P, Lo WU, Yeung MK, et al. Dissemination of pHK01-like incompatibility group IncFII plasmids encoding CTX-M-14 in Escherichia coli from human and animal sources. Vet Microbiol. 2012;158:172–179. doi: 10.1016/j.vetmic.2012.02.004
  • Hooper DC. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis. 2001;7:337–341. DOI:10.3201/eid0702.700337 doi: 10.3201/eid0702.010239
  • Chen S, Zhao S, White DG, et al. Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl Environ Microbiol. 2004;70:1–7. doi: 10.1128/AEM.70.1.1-7.2004
  • Szmolka A, Fortini D, Villa L, et al. First report on IncN plasmid-mediated quinolone resistance gene qnrS1 in porcine Escherichia coli in Europe. Microb Drug Resist. 2011;17:567–573. DOI:10.1089/mdr.2011.0068.
  • Gunell M, Webber MA, Kotilainen P, et al. Mechanisms of resistance in nontyphoidal Salmonella enterica strains exhibiting a nonclassical quinolone resistance phenotype. Antimicrob Agents Chemother. 2009;53:3832–3836. DOI:10.1128/AAC.00121-09.
  • Ferrari R, Galiana A, Cremades R, et al. Plasmid-mediated quinolone resistance by genes qnrA1 and qnrB19 in Salmonella strains isolated in Brazil. J Infect Dev Ctries. 2011;5:496–498. doi: 10.3855/jidc.1735
  • Ceyssens PJ, Mattheus W, Vanhoof R, et al. Trends in serotype distribution and antimicrobial susceptibility in Salmonella enterica isolates from humans in Belgium, 2009 to 2013. Antimicrob Agents Chemother. 2015;59:544–552. DOI:10.1128/AAC.04203-14.
  • Abgottspon H, Zurfluh K, Nuesch-Inderbinen M, et al. Quinolone resistance mechanisms in Salmonella enterica serovars Hadar, Kentucky, Virchow, Schwarzengrund, and 4,5,12:i:-, isolated from humans in Switzerland, and identification of a novel qnrD variant, qnrD2, in S. Hadar. Antimicrob Agents Chemother. 2014;58:3560–3563. DOI:10.1128/AAC.02404-14.
  • Nuesch-Inderbinen M, Abgottspon H, Sagesser G, et al. Antimicrobial susceptibility of travel-related Salmonella enterica serovar Typhi isolates detected in Switzerland (2002-2013) and molecular characterization of quinolone resistant isolates. BMC Infect Dis. 2015;15:212. DOI:10.1186/s12879-015-0948-2.
  • Wong MH, Chan EW, Liu LZ, et al. PMQR genes oqxAB and aac(6’)Ib-cr accelerate the development of fluoroquinolone resistance in Salmonella typhimurium. Front Microbiol. 2014;5:521. DOI:10.3389/fmicb.2014.00521.
  • Lin D, Chen K, Wai-Chi Chan E, et al. Increasing prevalence of ciprofloxacin-resistant food-borne Salmonella strains harboring multiple PMQR elements but not target gene mutations. Sci Rep. 2015;5:14754. DOI:10.1038/srep14754.
  • Li R, Lin D, Chen K, et al. First detection of AmpC beta-lactamase bla(CMY-2) on a conjugative IncA/C plasmid in a Vibrio parahaemolyticus isolate of food origin. Antimicrob Agents Chemother. 2015;59:4106–4111. DOI:10.1128/AAC.05008-14.
  • Chen K, Dong N, Zhao S, et al. Identification and characterization of conjugative plasmids that encode ciprofloxacin resistance in Salmonella. Antimicrob Agents Chemother. 2018;62:00575–00518.
  • Wang Y, Zhang R, Li J, et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol. 2017;2:16260. doi: 10.1038/nmicrobiol.2016.260
  • Chen S, Cui S, McDermott PF, et al. Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar Typhimurium to fluoroquinolones and other antimicrobials. Antimicrob Agents Chemother. 2007;51:535–542. DOI:10.1128/AAC.00600-06.
  • Kim J, Han X, Bae J, et al. Prevalence of plasmid-mediated quinolone resistance (PMQR) genes in non-typhoidal Salmonella strains with resistance and reduced susceptibility to fluoroquinolones from human clinical cases in Alberta, Canada, 2009-13. J Antimicrob Chemother. 2016;71:2988–2990. DOI:10.1093/jac/dkw232.
  • Ferrari R, Galiana A, Cremades R, et al. Plasmid-mediated quinolone resistance (PMQR) and mutations in the topoisomerase genes of Salmonella enterica strains from Brazil. Braz J Microbiol. 2013;44:657–662. DOI:10.1590/S1517-83822013000200046.
  • Pribul BR, Festivo ML, Rodrigues MS, et al. Characteristics of quinolone resistance in Salmonella spp. isolates from the food chain in Brazil. Front Microbiol. 2017;8:299, DOI:10.3389/fmicb.2017.00299.
  • Wong MH-Y, Chan EW-C, Chen S. IS 26-mediated formation of a virulence and resistance plasmid in Salmonella enteritidis. J Antimicrob Chemother. 2017;72:2750–2754. doi: 10.1093/jac/dkx238
  • Xie M, Li R, Liu Z, et al. Recombination of plasmids in a carbapenem-resistant NDM-5-producing clinical Escherichia coli isolate. J Antimicrob Chemother. 2018;73:1230–1234. doi: 10.1093/jac/dkx540
  • Garcia A, Navarro F, Mirã E, et al. Acquisition and diffusion of bla CTX-M-9 gene by R478-IncHI2 derivative plasmids. FEMS Microbiol Lett. 2007;271:71–77. DOI:10.1111/j.1574-6968.2007.00695.x.
  • Meyer R. Replication and conjugative mobilization of broad host-range IncQ plasmids. Plasmid. 2009;62:57–70. DOI:10.1016/j.plasmid.2009.05.001.
  • Sun J, Yang R-S, Zhang Q, et al. Co-transfer of blaNDM-5 and mcr-1 by an IncX3-X4 hybrid plasmid in Escherichia coli. Nat Microbiol. 2016;1:16176. DOI:10.1038/nmicrobiol.2016.176.
  • CLSI. Performance standards for antimicrobial susceptibility testing, twenty-sixth informational supplement. CLSI document M100-S26. Wayne, PA: Clinical and Laboratory Standards Institute; 2016.
  • Overbeek R, Olson R, Pusch GD, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014;42:D206–D214. DOI:10.1093/nar/gkt1226.