3,276
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of rodent control to fight Lassa fever based on field data and mathematical modelling

ORCID Icon, , , , , , , & show all
Pages 640-649 | Received 23 Jan 2019, Accepted 04 Apr 2019, Published online: 21 Apr 2019

References

  • Buckley, et al. Isolation and antigenic characterization of lassa virus. Nature. 1970;227:174. doi: 10.1038/227174a0
  • Walker, et al. Comparative pathology of Lassa virus infection in monkeys, Guinea-pigs, and Mastomys natalensis. Bull. World Health Organ. 1975;52:523–534.
  • Lecompte, et al. Lassa fever, West Africa. Emerg Infect Dis 2006;12. doi: 10.3201/eid1212.060812
  • McCormick JB. Lassa fever. Berlin: Elsevier, 1999.
  • Bonwitt, et al. At home with mastomys and rattus: human–rodent interactions and potential for primary transmission of lassa virus in domestic spaces. Am. J. Trop. Med. Hyg. 2017;96:935–943.
  • Carey, et al. Lassa fever epidemiological aspects of the 1970 epidemic, Jos, Nigeria. Trans. R. Soc. Trop. Med. Hyg. 1972;66:402–408. doi: 10.1016/0035-9203(72)90271-4
  • Lo Iacono, et al. Using modelling to Disentangle the Relative Contributions of Zoonotic and Anthroponotic transmission: The case of Lassa fever. PLoS Negl. Trop. Dis. 2015;9. doi: 10.1371/journal.pntd.0003398
  • Mccormick, et al. A prospective study of the epidemiology and ecology of lassa fever carried out primarily in the eastern province of Sierra. J. Infect. Dis. 1987;155:437–444. doi: 10.1093/infdis/155.3.437
  • Safronetz, et al. Detection of lassa virus, Mali. Emerg. Infect. Dis. 2010;16:1123–1126. doi: 10.3201/eid1607.100146
  • Roberts L. Nigeria hit by unprecedented Lassa fever outbreak. Science. 2018;359:1201–1202. doi: 10.1126/science.359.6381.1201
  • Redding, et al. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 2016;7:646–655. doi: 10.1111/2041-210X.12549
  • Gibb, et al. Understanding the cryptic nature of Lassa fever in West Africa. Pathog. Glob. Health 111, 276–288 2017. doi: 10.1080/20477724.2017.1369643
  • Fichet-Calvet, et al. Fluctuation of abundance and Lassa virus prevalence in Mastomys natalensis in Guinea, West Africa. Vector Borne Zoonotic Dis. 2007;7:119–128. doi: 10.1089/vbz.2006.0520
  • Mariën, et al. Movement Patterns of small rodents in Lassa fever-endemic villages in Guinea. Ecohealth. 2018;15:348–359. doi: 10.1007/s10393-018-1331-8
  • Davis, et al. Fluctuating rodent populations and risk to humans from rodent-borne Zoonoses. Vector Borne Zoonotic Dis. 2005;5. doi: 10.1089/vbz.2005.5.305
  • Begon, et al. A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiol. Infect. 2002;129:147–153. doi: 10.1017/S0950268802007148
  • Bartlett et al. Measles periodicity and community size. J. R. Stat. Soc. 1957;120:48–70.
  • Lloyd-Smith, et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 2005;20:511–519. doi: 10.1016/j.tree.2005.07.004
  • Morters, et al. Evidence-based control of canine rabies: a critical review of population density reduction. J. Anim. Ecol. 2013;82:6–14. doi: 10.1111/j.1365-2656.2012.02033.x
  • McCallum, et al. Models for managing wildlife disease. Parasitology. 2016;143:805–820. doi: 10.1017/S0031182015000980
  • Borremans, et al. The shape of the contact–density function matters when modelling parasite transmission in fluctuating populations. R. Soc. Open Sci. 2017;4:171308. doi: 10.1098/rsos.171308
  • Leirs, H. Population ecology of Mastomys natalensis (Smith, 1834). Implications for rodent control in Africa; 1994.
  • Fichet-Calvet, et al. Reproductive characteristics of Mastomys natalensis and Lassa virus prevalence in Guinea, West Africa. Vector Borne Zoonotic Dis. 2008;8:41–48. doi: 10.1089/vbz.2007.0118
  • Sluydts, et al. Comparison of multimammate mouse (Mastomys natalensis) demography in monoculture and mosaic agricultural habitat: Implications for pest management. Crop Prot. 2009;28:647–654. doi: 10.1016/j.cropro.2009.03.018
  • Kennis, et al. Polyandry and polygyny in an African rodent pest species, Mastomys natalensis. Mammalia. 2008;72:150–160. doi: 10.1515/MAMM.2008.025
  • Borremans, et al. Happily together forever: temporal variation in spatial patterns and complete lack of territoriality in a promiscuous rodent. Popul. Ecol. 2014;56:109–118. doi: 10.1007/s10144-013-0393-2
  • Borremans B, et al. Nonlinear scaling of foraging contacts with rodent population density. Oikos. 2016: 1–9. doi:10.1111/oik.03623.
  • Mariën, J. Transmission Ecology of Old World Arenaviruses in Natural Populations of Their Reservoir Hosts. PhD dissertation (University of Antwerp, 2018).
  • Lukashevich, et al. Lassa virus activity in Guinea: distribution of human antiviral antibody defined using enzyme-linked immunosorbent assay with recombinant antigen. J. Med. Virol. 1993;40:210–217. doi: 10.1002/jmv.1890400308
  • Demby, et al. Lassa fever in Guinea: II. distribution and prevalence of Lassa virus infection in small mammals. Vector Borne Zoonotic Dis. 2001;1:283–299. doi: 10.1089/15303660160025912
  • Sáez, et al. Rodent control to fight Lassa fever: evaluation and lessons learned from a 4-year study in Upper Guinea. 2018: 1–16. doi:10.6084/m9.figshare.5545267.
  • Fichet-calve, et al. Diversity, dynamics and reproduction in a community of small mammals in Upper Guinea, with emphasis on pygmy mice ecology. Afr. J. Ecol. 2009;48:600–614.
  • Mills, et al. Methods for trapping and sampling small mammals for virologic testing. Atlanta: CDC; 1995.
  • Borremans B. Ammonium improves elution of fixed dried blood spots without affecting immunofluorescence assay quality. Trop Med Int Health. 2014;19:413–416. doi: 10.1111/tmi.12259
  • Wulff, Lange. Indirect immunofluorescence for the diagnosis of Lassa fever infection. Bull World Heal. organ. 1975;52:429–436.
  • Fichet-Calvet, et al. Lassa serology in natural populations of rodents and horizontal transmission. Vector Borne Zoonotic Dis. 2014;14:665–674. doi: 10.1089/vbz.2013.1484
  • Morris P. A review of mammalian age determination methods. Mamm. Rev. 1972;2:69–104. doi: 10.1111/j.1365-2907.1972.tb00160.x
  • R Core Team. R: a language and environment for statistical 688 computing; 2016.
  • Smith, et al. Host–pathogen time series data in wildlife support a transmission function between density and frequency dependence. Proc. Natl. Acad. Sci. 2009;106:7905–7909. doi: 10.1073/pnas.0809145106
  • Mariën, et al. Arenavirus dynamics in experimentally and naturally infected rodents. Ecohealth. 2017;14:463–473. doi: 10.1007/s10393-017-1256-7
  • Fichet-Calvet, et al. Spatial and temporal evolution of Lassa virus in the natural host population in Upper Guinea. Sci. Rep. 2016: 1–6. doi:10.1038/srep21977.
  • Taylor, et al. Experimental treatment-control studies of ecologically based rodent management in Africa: Balancing conservation and pest management. Wildl. Res. 2012;39:51–61. doi: 10.1071/WR11111
  • Taylor, et al. Understanding and managing sanitary risks due to rodent zoonoses in an African city: beyond the Boston model. Integr. Zool. 2008;3:38–50. doi: 10.1111/j.1749-4877.2008.00072.x
  • Humphrys, Lapidge. Delivering and registering species-tailored oral antifertility products: A review. Wildl. Res. 2008;35:578–585. doi: 10.1071/WR07145
  • Hone J. Rate of Increase and Fertility Control. J. Appl. Ecol. 1992;29:695–698. doi: 10.2307/2404478
  • Stenseth, et al. Comparing strategies for controlling an African pest rodent: an empirically based theoretical study. 2010;38:1020–1031.
  • Singleton, et al. Unwanted and unintended effects of culling: A case for ecologically-based rodent management. Integr. Zool. 2007;2:247–259. doi: 10.1111/j.1749-4877.2007.00067.x
  • Massawe, et al. Effect of synthetic hormones on reproduction in Mastomys natalensis. J. Pest Sci. 2004;91:157–168. doi: 10.1007/s10340-017-0894-4
  • Labuschagne, et al. Are avian predators effective biological control agents for rodent pest management in agricultural systems? Biol Control. 2016;101:94–102. doi: 10.1016/j.biocontrol.2016.07.003
  • Mahlaba, et al. Domestic cats and dogs create a landscape of fear for pest rodents around rural homesteads. PLoS One. 2017;12:1–9. doi: 10.1371/journal.pone.0171593
  • Cross, et al. The potential of oral vaccines for disease control in wildlife species. Vet. J. 2007;174:472–480. doi: 10.1016/j.tvjl.2006.10.005
  • Mendoza, et al. Baited vaccines: A strategy to mitigate rodent - borne viral zoonoses in humans. 2018: 1–17. doi:10.1111/zph.12487.
  • Woods, et al. The immune response of the Tasmanian devil (Sarcophilus harrisii) and devil facial tumour disease. Ecohealth. 2007;4:338–345. doi: 10.1007/s10393-007-0117-1
  • Kollipara, et al. Vaccination of healthy and diseased koalas (Phascolarctos cinereus) with a Chlamydia pecorum multi-subunit vaccine: Evaluation of immunity and pathology. Vaccine. 2012;30:1875–1885. doi: 10.1016/j.vaccine.2011.12.125
  • Cashins, et al. Prior infection does Not Improve survival against the Amphibian disease chytridiomycosis. PLoS One. 2013;8:1–7. doi: 10.1371/journal.pone.0056747
  • Swanepoel, et al. A systematic review of rodent pest research in Afro-Malagasy small-holder farming systems: Are we asking the right questions? PLoS One. 2017;12.