1,740
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Insights into species-specific regulation of ANP32A on the mammalian-restricted influenza virus polymerase activity

, , , , , & show all
Pages 1465-1478 | Received 15 Jun 2019, Accepted 28 Sep 2019, Published online: 14 Oct 2019

References

  • Kuiken T, Holmes EC, McCauley J, et al. Host species barriers to influenza virus infections. Science. 2006;312(5772):394–397.
  • Uyeki TM. Global epidemiology of human infections with highly pathogenic avian influenza a (H5N1) viruses. Respirology. 2008;13(Suppl 1):S2–S9.
  • Osterlund P, Pirhonen J, Ikonen N, et al. Pandemic H1N1 2009 influenza A virus induces weak cytokine responses in human macrophages and dendritic cells and is highly sensitive to the antiviral actions of interferons. J Virol. 2010;84(3):1414–1422.
  • Ding X, Luo J, Quan L, et al. Evolutionary genotypes of influenza A (H7N9) viruses over five epidemic waves in China. Infect Genet Evol. 2017;55:269–276.
  • Su S, Gu M, Liu D, et al. Epidemiology, evolution, and pathogenesis of H7N9 influenza viruses in five epidemic waves since 2013 in China. Trends Microbiol. 2017;25(9):713–728.
  • Chen H, Yuan H, Gao R, et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet. 2014;383(9918):714–721.
  • Pan Y, Cui S, Sun Y, et al. Human infection with H9N2 avian influenza in northern China. Clin Microbiol Infect. 2018;24(3):321–323.
  • Peiris M, Yuen KY, Leung CW, et al. Human infection with influenza H9N2. Lancet. 1999;354(9182):916–917.
  • Wei SH, Yang JR, Wu HS, et al. Human infection with avian influenza A H6N1 virus: an epidemiological analysis. Lancet Respir Med. 2013;1(10):771–778.
  • Yuan J, Zhang L, Kan X, et al. Origin and molecular characteristics of a novel 2013 avian influenza A(H6N1) virus causing human infection in Taiwan. Clin Infect Dis. 2013;57(9):1367–1368.
  • Belser JA, Davis CT, Balish A, et al. Pathogenesis, transmissibility, and ocular tropism of a highly pathogenic avian influenza A (H7N3) virus associated with human conjunctivitis. J Virol. 2013;87(10):5746–5754.
  • Jonges M, Welkers MR, Jeeninga RE, et al. Emergence of the virulence-associated PB2 E627K substitution in a fatal human case of highly pathogenic avian influenza virus A(H7N7) infection as determined by Illumina ultra-deep sequencing. J Virol. 2014;88(3):1694–1702.
  • Taubenberger JK, Reid AH, Krafft AE, et al. Initial genetic characterization of the 1918 “spanish” influenza virus. Science. 1997;275(5307):1793–1796.
  • Te Velthuis AJ, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol. 2016;14(8):479–493.
  • Thierry E, Guilligay D, Kosinski J, et al. Influenza polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 domains. Mol Cell. 2016;61(1):125–137.
  • Ferhadian D, Contrant M, Printz-Schweigert A, et al. Structural and functional Motifs in influenza virus RNAs. Front Microbiol. 2018;9:559.
  • Pflug A, Lukarska M, Resa-Infante P, et al. Structural insights into RNA synthesis by the influenza virus transcription-replication machine. Virus Res. 2017;234:103–117.
  • Manz B, de Graaf M, Mögling R, et al. Multiple Natural substitutions in avian influenza A virus PB2 Facilitate efficient replication in human cells. J Virol. 2016;90(13):5928–5938.
  • Cauldwell AV, Moncorgé O, Barclay WS. Unstable polymerase-nucleoprotein interaction is not responsible for avian influenza virus polymerase restriction in human cells. J Virol. 2013;87(2):1278–1284.
  • Paterson D, te Velthuis AJ, Vreede FT, et al. Host restriction of influenza virus polymerase activity by PB2 627E is diminished on short viral templates in a nucleoprotein-independent manner. J Virol. 2014;88(1):339–344.
  • Hudjetz B, Gabriel G. Human-like PB2 627K influenza virus polymerase activity is regulated by importin-alpha1 and -alpha7. PLoS Pathog. 2012;8(1):e1002488.
  • Kuo SM, Chen CJ, Chang SC, et al. Inhibition of avian influenza A Virus replication in human cells by host restriction factor TUFM is correlated with autophagy. MBio. 2017;8(3):e00481–17.
  • Weber M, Sediri H, Felgenhauer U, et al. Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell Host Microbe. 2015;17(3):309–319.
  • Long JS, Giotis ES, Moncorgé O, et al. Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature. 2016;529(7584):101–104.
  • Baker SF, Ledwith MP, Mehle A. Differential Splicing of ANP32A in Birds Alters Its ability to stimulate RNA synthesis by restricted influenza polymerase. Cell Rep. 2018;24(10):2581–2588.e4.
  • Domingues P, Hale BG. Functional Insights into ANP32A-dependent influenza A virus polymerase host restriction. Cell Rep. 2017;20(11):2538–2546.
  • Liang L, Jiang L, Li J, et al. Low polymerase activity Attributed to PA Drives the acquisition of the PB2 E627K mutation of H7N9 avian influenza virus in Mammals. MBio. 2019;10(3):e01162–19.
  • Massin P, Rodrigues P, Marasescu M, et al. Cloning of the chicken RNA polymerase I promoter and use for reverse genetics of influenza A viruses in avian cells. J Virol. 2005;79(21):13811–13816.
  • Yan L, Liu Q, Su X, et al. Pathogenicity of reassortant H9 influenza viruses with different NA genes in mice and chickens. Vet Res. 2016;47(1):67.
  • Kawakami E, Watanabe T, Fujii L, et al. Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. J Virol Methods. 2011;173(1):1–6.
  • Nilsson BE, Te Velthuis AJW, Fodor E. Role of the PB2 627 domain in influenza A virus polymerase function. J Virol. 2017;91(7):e02467–16.
  • Hu M, Yuan S, Zhang K, et al. PB2 substitutions V598T/I increase the virulence of H7N9 influenza A virus in mammals. virology. 2017;501:92–101.
  • Vreede FT, Jung TE, Brownlee GG. Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J Virol. 2004;78(17):9568–9572.
  • Manz B, Brunotte L, Reuther P, et al. Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells. Nat Commun. 2012;3:802.
  • Staller E, Sheppard CM, Neasham PJ, et al. ANP32 proteins Are essential for influenza virus replication in human cells. J Virol. 2019;93(17):e00217–19.
  • Zhang H, Zhang Z, Wang Y, et al. Fundamental Contribution and host range Determination of ANP32A and ANP32B in influenza A virus polymerase activity. J Virol. 2019;93(13):e00174–19.
  • Long JS, Idoko-Akoh A, Mistry B, et al. Species specific differences in use of ANP32 proteins by influenza A virus. Elife. 2019;8:e45066.
  • Sugiyama K, Kawaguchi A, Okuwaki M, et al. Pp32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA. Elife. 2015;4:e08939.
  • Pflug A, Guilligay D, Reich S, et al. Structure of influenza A polymerase bound to the viral RNA promoter. Nature. 2014;516(7531):355–360.
  • Deng T, Vreede FT, Brownlee GG. Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J Virol. 2006;80(5):2337–2348.