6,101
Views
44
CrossRef citations to date
0
Altmetric
Articles

Shotgun proteomics analysis of SARS-CoV-2-infected cells and how it can optimize whole viral particle antigen production for vaccines

ORCID Icon, , ORCID Icon, , ORCID Icon, , , , , ORCID Icon, , , , , , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 1712-1721 | Received 17 Apr 2020, Accepted 30 Jun 2020, Published online: 27 Jul 2020

References

  • Jiang S, Du L, Shi Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerg Microbes Infect. 2020;9(1):275–277. doi: 10.1080/22221751.2020.1723441
  • Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health. 2020 Mar;25(3):278–280. doi: 10.1111/tmi.13383
  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270–273. doi: 10.1038/s41586-020-2012-7
  • Weston S, Frieman MB. COVID-19: knowns, unknowns, and questions. mSphere. 2020 Mar 18;5(2):e00203-20. doi: 10.1128/mSphere.00203-20
  • Le T T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020 May;19(5):305–306. doi: 10.1038/d41573-020-00073-5
  • Padron-Regalado E. Vaccines for SARS-CoV-2: lessons from other coronavirus strains. Infect Dis Ther. 2020 Apr 23;9(2):1–20. doi: 10.1007/s40121-020-00300-x
  • Plotkin SA. [New vaccination strategies]. Bull Acad Natl Med. 2008 Mar;192(3):511–518. discussion 8–9.
  • Plotkin SA, Plotkin SL. The development of vaccines: how the past led to the future. Nat Rev Microbiol. 2011 Oct 3;9(12):889–893. doi: 10.1038/nrmicro2668
  • Sun J, Han Z, Shao Y, et al. Comparative proteome analysis of tracheal tissues in response to infectious bronchitis coronavirus, Newcastle disease virus, and avian influenza virus H9 subtype virus infection. Proteomics. 2014 Jun;14(11):1403–1423. doi: 10.1002/pmic.201300404
  • Zeng S, Zhang H, Ding Z, et al. Proteome analysis of porcine epidemic diarrhea virus (PEDV)-infected Vero cells. Proteomics. 2015 Jun;15(11):1819–1828. doi: 10.1002/pmic.201400458
  • Lin H, Li B, Chen L, et al. Differential protein analysis of IPEC-J2 cells infected with porcine epidemic diarrhea virus pandemic and classical strains elucidates the pathogenesis of infection. J Proteome Res. 2017 Jun 2;16(6):2113–2120. doi: 10.1021/acs.jproteome.6b00957
  • Choi S, Lee C. Functional characterization and proteomic analysis of porcine deltacoronavirus accessory protein NS7. J Microbiol Biotechnol. 2019 Nov 28;29(11):1817–1829. doi: 10.4014/jmb.1908.08013
  • Bojkova D, Klann K, Koch B, et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature. 2020; In press.
  • Ortea I, Bock JO. Re-analysis of SARS-CoV-2 infected host cell proteomics time-course data by impact pathway analysis and network analysis. A potential link with inflammatory response; 2020. https://www.biorxiv.org/content/10.1101/2020.03.26.009605v1.
  • Davidson AD, Williamson MK, Lewis S, et al. Characterisation of the transcriptome and proteome of SARS-CoV-2 using direct RNA sequencing and tandem mass spectrometry reveals evidence for a cell passage induced in-frame deletion in the spike glycoprotein that removes the furin-like cleavage site; 2020. https://www.biorxiv.org/content/10.1101/2020.03.22.002204v1.
  • Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020 Jan;25(3):2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045
  • Hartmann EM, Allain F, Gaillard JC, et al. Taking the shortcut for high-throughput shotgun proteomic analysis of bacteria. Methods Mol Biol. 2014;1197:275–285. doi: 10.1007/978-1-4939-1261-2_16
  • Pereira S, Malard V, Ravanat JL, et al. Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells. PLoS One. 2014;9(3):e92974. doi: 10.1371/journal.pone.0092974
  • Perez-Riverol Y, Csordas A, Bai J, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019 Jan 8;47(D1):D442–DD50. doi: 10.1093/nar/gky1106
  • Gouveia D, Grenga L, Pible O, et al. Quick microbial molecular phenotyping by differential shotgun proteomics. Environ Microbiol. in press.
  • Rau A, Maugis-Rabusseau C. Transformation and model choice for RNA-seq co-expression analysis. Brief Bioinform. 2018 May 1;19(3):425–436.
  • Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019 Apr 3;10(1):1523. doi: 10.1038/s41467-019-09234-6
  • Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer International Publishing; 2016; eBook ISBN 978-3-319-24277-4 10.1007/978-3-319-24277-4.
  • Park WB, Kwon NJ, Choi SJ, et al. Virus isolation from the first patient with SARS-CoV-2 in Korea. J Korean Med Sci. 2020 Feb 24;35(7):e84. doi: 10.3346/jkms.2020.35.e84
  • Grenga L, Pible O, Armengaud J. Pathogen proteotyping: a rapidly developing application of mass spectrometry to address clinical concerns. Clinical Mass Spectrometry. 2019;14:9–17. doi: 10.1016/j.clinms.2019.04.004
  • Karlsson R, Gonzales-Siles L, Boulund F, et al. Proteotyping: proteomic characterization, classification and identification of microorganisms–a prospectus. Syst Appl Microbiol. 2015 Jun;38(4):246–257. doi: 10.1016/j.syapm.2015.03.006
  • Tang T, Bidon M, Jaimes JA, et al. Coronavirus membrane fusion mechanism offers as a potential target for antiviral development. Antiviral Res. 2020 Apr 6;178:104792. doi: 10.1016/j.antiviral.2020.104792
  • Chew T, Noyce R, Collins SE, et al. Characterization of the interferon regulatory factor 3-mediated antiviral response in a cell line deficient for IFN production. Mol Immunol. 2009 Jan;46(3):393–399. doi: 10.1016/j.molimm.2008.10.010
  • Jiang XS, Tang LY, Dai J, et al. Quantitative analysis of severe acute respiratory syndrome (SARS)-associated coronavirus-infected cells using proteomic approaches: implications for cellular responses to virus infection. Mol Cell Proteomics. 2005 Jul;4(7):902–913. doi: 10.1074/mcp.M400112-MCP200
  • Gouveia D, Grenga L, Gaillard JC, et al. Shortlisting SARS-CoV-2 peptides for targeted studies from experimental data-dependent acquisition tandem mass spectrometry data. Proteomics. 2020 May 27: e2000107. doi: 10.1002/pmic.202000107
  • Benam KH, Villenave R, Lucchesi C, et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods. 2016 Feb;13(2):151–157. doi: 10.1038/nmeth.3697
  • Weston S, Haupt R, Logue J, et al. FDA approved drugs with broad anti-coronaviral activity inhibit SARS-CoV-2 in vitro; 2020. https://www.biorxiv.org/content/10.1101/2020.03.25.008482v1.
  • Jeon S, Ko M, Lee J, et al. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob Agents Chemother. 2020 Jun 23;64(7):e00819-20. doi: 10.1128/AAC.00819-20
  • Si L, Bai H, Rodas M, et al. Human organs-on-chips as tools for repurposing approved drugs as potential influenza and COVID19 therapeutics in viral pandemics; 2020. https://www.biorxiv.org/content/10.1101/2020.04.13.039917v1.