8,897
Views
41
CrossRef citations to date
0
Altmetric
Articles

SARS-CoV-2 spike produced in insect cells elicits high neutralization titres in non-human primates

, ORCID Icon, , , , , , , , , , , , , , , , , , , ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2076-2090 | Received 23 Jul 2020, Accepted 06 Sep 2020, Published online: 24 Sep 2020

References

  • De Wit E, Van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016 Aug;14(8):523–534.
  • Chan JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020 Dec;9(1):221–236.
  • Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020 Feb 20;382(8):727–733.
  • Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 Feb 7;323(11):1061–1069.
  • Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. New Engl J Med. 2020;382(10):970–971.
  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270–273.
  • Wan Y, Shang J, Graham R, et al. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol. 2020 Jan 29;94(7):e00127–20.
  • Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015;202:120–134.
  • Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, NY). 2020;367(6483):1260–1263.
  • Walls AC, Xiong X, Park Y-JJ, et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell. 2019;176(5):1026.
  • Yuan Y, Cao D, Zhang Y, et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun. 2017;8:15092.
  • Walls AC, Park Y-JJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292.e6.
  • Medina RA, Stertz S, Manicassamy B, et al. Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Sci Transl Med. 2013;5:187.
  • Liu W-CC, Jan J-TT, Huang Y-JJ, et al. Unmasking stem-specific neutralizing epitopes by abolishing N-linked glycosylation sites of influenza hemagglutinin proteins for vaccine design. J Virol. 2016;90(19):00880–16.
  • Go EP, Ding H, Zhang S, et al. Glycosylation benchmark profile for HIV-1 envelope glycoprotein production based on eleven Env trimers. J Virol. 2017;91(9):e02428–16.
  • Sok D, Pauthner M, Briney B, et al. A prominent site of antibody vulnerability on HIV envelope incorporates a motif associated with CCR5 binding and its camouflaging glycans. Immunity. 2016;45(1):31–45.
  • Watanabe Y, Allen JD, Wrapp D, et al. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369(6501):330–333.
  • Lu S. Timely development of vaccines against SARS-CoV-2. Emerg Microbes Infect. 2020 Dec;9(1):542–544.
  • Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;369(6499):77–81.
  • Li T, Zhang Z, Zhang Z, et al. Characterization of native-like HIV-1 gp140 glycoprotein expressed in insect cells. Vaccine. 2019;37(11):1418–1427.
  • Li Z, Wang D, Gu Y, et al. Crystal structures of two immune complexes identify determinants for viral Infectivity and type-specific neutralization of human papillomavirus. mBio. 2017;8:5.
  • Zhang X, Wei M, Pan H, et al. Robust manufacturing and comprehensive characterization of recombinant hepatitis E virus-like particles in Hecolin(®). Vaccine. 2014;32(32):4039–4050.
  • Zheng SQ, Palovcak E, Armache J-P, et al. Motioncor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods. 2017;14(4):331.
  • Zhang K. Gctf: real-time CTF determination and correction. J Struct Biol. 2016;193(1):1–12.
  • Punjani A, Rubinstein JL, Fleet DJ, et al. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods. 2017 Mar;14(3):290–296.
  • Kucukelbir A, Sigworth FJ, Tagare HD. Quantifying the local resolution of cryo-EM density maps. Nat Methods. 2014;11(1):63.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612.
  • Xiong H-L, Wu Y-T, Cao J-L, et al. Robust neutralization assay based on SARS-CoV-2 S-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressed BHK21 cells. bioRxiv. 2020. DOI:10.1101/2020.04.08.026948
  • Pallesen J, Wang N, Corbett KS, et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci U S A. 2017;114(35):E7348.
  • Sui J, Hwang WC, Perez S, et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol. 2009;16(3):265–273.
  • Maley F, Trimble RB, Tarentino AL, et al. Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem. 1989;180(2):195–204.
  • Bloch M, Santiveri M, Taylor NMI. Membrane protein cryo-EM: cryo-Grid optimization and data collection with protein in detergent. Methods Mol Biol. 2020;2127:227–244.
  • Drulyte I, Johnson RM, Hesketh EL, et al. Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Crystallogr Section D Biol Crystallogr. 2018;74(6):560–571.
  • Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263.
  • Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity. 2020;52(4):583–589.
  • Kam YW, Kien FO, Roberts A, et al. Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro. Vaccine. 2007;25(4): 0–740.
  • Jaume M, Yip M, Kam Y, et al. SARS CoV subunit vaccine: antibody-mediated neutralisation and enhancement. Xianggang Yi Xue Za Zhi. 2012;18(Suppl. 2):31.
  • Li J, Ulitzky L, Silberstein E, et al. Immunogenicity and protection efficacy of monomeric and trimeric recombinant SARS coronavirus spike protein subunit vaccine candidates. Viral Immunol. 2013;26(2):126–132.
  • Palomares LA, Srivastava IK, Ramírez OT, et al. Glycobiotechnology of the insect cell-baculovirus expression system technology. Adv Biochem Eng Biotechnol. 2018:1–22.
  • Chen J-R, Yu Y-H, Tseng Y-C, et al. Vaccination of monoglycosylated hemagglutinin induces cross-strain protection against influenza virus infections. Proc Natl Acad Sci U S A. 2014;111(7):2476–2481.
  • Zhou T, Doria-Rose NA, Cheng C, et al. Quantification of the impact of the HIV-1-glycan shield on antibody elicitation. Cell Rep. 2017;19(4):719–732.
  • Urbanowicz RA, Wang R, Schiel JE, et al. Antigenicity and immunogenicity of differentially glycosylated HCV E2 envelope proteins expressed in mammalian and insect cells. J Virol. 2019;93(7):e01403–18.
  • Lv H, Wu NC, Tsang OT-Y, et al. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. Cell Rep. 2020;31(9):107725.
  • Victora GD, Mesin L. Clonal and cellular dynamics in germinal centers. Curr Opin Immunol. 2014;28:90–96.
  • Li Z, Song S, He M, et al. Rational design of a triple-type human papillomavirus vaccine by compromising viral-type specificity. Nat Commun. 2018;9(1):5360.
  • Yu J, Tostanoski LH, Peter L, et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science. 2020;369:806–811.
  • Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci Usa. 2009;106(14):5871–5876.
  • Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A. 2014;111(42):15214–15219.
  • Crank MC, Ruckwardt TJ, Chen M, et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science. 2019;365(6452):505–509.
  • McLellan JS, Chen M, Joyce MG, et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science (New York, NY). 2013;342(6158):592–598.
  • Sanders RW, Gils MJ, Derking R, et al. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science (New York, NY). 2015;349(6244):aac4223.
  • Guebre-Xabier M, Patel N, Tian J-H, et al. NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. bioRxiv. 2020. DOI:10.1101/2020.08.18.256578
  • Corbett KS, Edwards DK, Leist SR, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020:1–8.
  • Bao L, Deng W, Huang B, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020;583:830–833.
  • Sia SF, Yan L-M, Chin AWH, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583:834–838.