5,616
Views
15
CrossRef citations to date
0
Altmetric
Influenza Infections

Emergence, prevalence, and evolution of H5N8 avian influenza viruses in central China, 2020

ORCID Icon, , , , , , , , , , , , , , , , , , , , , , , , , , , & ORCID Icon show all
Pages 73-82 | Received 06 Oct 2021, Accepted 23 Nov 2021, Published online: 22 Dec 2021

References

  • Webster RG, Bean WJ, Gorman OT, et al. Evolution and ecology of influenza a viruses. Microbiol Rev. 1992;56:152–179.
  • Lycett SJ, Bodewes R, Pohlmann A, et al. Role for migratory wild birds in the global spread of avian influenza H5N8. Science. 2016;354:213–217.
  • Lee YJ, Kang HM, Lee EK, et al. Novel reassortant influenza A(H5N8) viruses, South Korea, 2014. Emerg Infect Dis. 2014;20:1087–1089.
  • Lee DH, Torchetti MK, Winker K, et al. Intercontinental spread of asian-origin H5N8 to North America through beringia by migratory birds. J Virol. 2015;89:6521–6524.
  • Verhagen JH, Herfst S, Fouchier RAM. How a virus travels the world. Science. 2015;347:616–617.
  • Li MX, Liu HZ, Bi YH, et al. Highly pathogenic avian influenza A(H5N8) virus in wild migratory birds, qinghai lake, China. Emerg Infect Dis. 2017;23:637–641.
  • Lewis NS, Banyard AC, Whittard E, et al. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerg Microbes Infect. 2021;10:148–151.
  • Pyankova OG, Susloparov IM, Moiseeva AA, et al. Isolation of clade 2.3.4.4b A(H5N8), a highly pathogenic avian influenza virus, from a worker during an outbreak on a poultry farm, russia, December 2020. Euro Surveill. 2021;26:2100439.
  • Shi WF, Gao GF. Emerging H5N8 avian influenza viruses. Science. 2021;372:784–786.
  • Saito T, Tanikawa T, Uchida Y, et al. Intracontinental and intercontinental dissemination of Asian H5 highly pathogenic avian influenza virus (clade 2.3.4.4) in the winter of 2014-2015. Rev Med Virol. 2015;25:388–405.
  • Hesterberg U, Harris K, Stroud D, et al. Avian influenza surveillance in wild birds in the European Union in 2006. Influenza Other Respir Viruses. 2009;3:1–14.
  • Napp S, Majo N, Sanchez-Gonzalez R, et al. Emergence and spread of highly pathogenic avian influenza A(H5N8) in Europe in 2016-2017. Transbound Emerg Dis. 2018;65:1217–1226.
  • Brown JD, Stallknecht DE, Swayne DE. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of asian lineage. Emerg Infect Dis. 2008;14:136–142.
  • Meng W, Yang Q, Vrancken B, et al. New evidence for the east-west spread of the highly pathogenic avian influenza H5N1 virus between Central Asian and east Asian-Australasian flyways in China. Emerg Microbes Infect. 2019;8:823–826.
  • Fang L, Junjian Z, Zhao Q, et al. Two distinct flyways with different population trends of bewick‘s swan cygnus columbianus bewickii in east Asia. Wildfowl. 2020: 13–42.
  • Bi Y, Zhang Z, Liu W, et al. Highly pathogenic avian influenza A(H5N1) virus struck migratory birds in China in 2015. Sci Rep. 2015;5:12986–12987.
  • Manu U. WHO Manual on Animal Influenza Diagnosis and Surveillance. WHO global influenza programme. (2002). https://www.who.int/csr/resources/publications/influenza/whocdscsrncs20025rev.pdf.
  • Tavares ES, Baker AJ. Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol Biol. 2008;8:1–14.
  • Lee DH, Lee HJ, Lee YN, et al. Application of DNA barcoding technique in avian influenza virus surveillance of wild bird habitats in Korea and Mongolia. Avian Dis. 2010;54:677–681.
  • Chai H. Molecular epidemiological study on influenza virus in wild birds of Heilongjiang. [dissertation]. Harbin (CN): Northeast Forestry University; 2012.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780.
  • Zhang D, Gao FL, Jakovlic I, et al. Phylosuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour. 2020;20:348–355.
  • Nguyen LT, Schmidt HA, von Haeseler A, et al. IQ-tree: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274.
  • Minh BQ, Nguyen M, Haeseler AV. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–1195.
  • Kalyaanamoorthy S, Bui Quang M, Wong TKF, et al. Modelfinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589.
  • Suchard MA, Lemey P, Baele G, et al. Bayesian phylogenetic and phylodynamic data integration using beast 1.10. Virus Evol. 2018;4:vey016.
  • Wei X, Chen M, Cui J. Bayesian evolutionary analysis for emerging infectious disease: an exemplified application for H7N9 avian influenza viruses. Sci China Life Sci. 2017;60:1392–1395.
  • Baele G, Lemey P, Bedford T, et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol. 2012;29:2157–2167.
  • Rambaut A, Drummond AJ, Xie D, et al. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol. 2018;67:901–904.
  • Filip B, Guy B, Bram V, et al. Spread3: interactive visualization of spatiotemporal history and trait evolutionary processes. Mol Bio Evol. 2016;33:2167–2169.
  • Li X, Lv X, Li Y, et al. Highly pathogenic avian influenza A(H5N8) virus in swans, China, 2020. Emerg Infect Dis. 2021;27:1732–1734.
  • He G, Ming L, Li X, et al. Genetically divergent highly pathogenic avian influenza A(H5N8) viruses in wild birds, Eastern China. Emerg Infect Dis. 2021;27:2940–2943.
  • Cui P, Zeng X, Li X, et al. Genetic and biological characteristics of the globally circulating H5N8 avian influenza viruses and the protective efficacy offered by the poultry vaccine currently used in China. Sci China Life Sci. 2021;14. DOI: 10.1007/s11427-021-2025-y
  • Isoda N, Twabela AT, Bazarragchaa E, et al. Re-invasion of H5N8 high pathogenicity avian influenza virus clade 2.3.4.4b in hokkaido, Japan, 2020. Viruses. 2020;12:1439.
  • Jeong S, Lee DH, Kwon JH, et al. Highly pathogenic avian influenza clade 2.3.4.4b subtype H5N8 virus isolated from mandarin duck in South Korea, 2020. Viruses. 2020;12:1389.
  • Chutinimitkul S, van Riel D, Munster VJ, et al. In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza a viruses with altered receptor specificity. J Virol. 2010;84:6825–6833.
  • Yang ZY, Wei CJ, Kong WP, et al. Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science. 2007;317:825–828.
  • Wang W, Lu B, Zhou H, et al. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol. 2010;84:6570–6577.
  • Watanabe Y, Ibrahim MS, Ellakany HF, et al. Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog. 2011;7:e1002068.
  • Taft AS, Ozawa M, Fitch A, et al. Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nat Commun. 2015;6:7491.
  • Hatta M, Hatta Y, Kim JH, et al. Growth of H5N1 influenza a viruses in the upper respiratory tracts of mice. PLoS Pathog. 2007;3:1374–1379.
  • Elgendy EM, Arai Y, Kawashita N, et al. Identification of polymerase gene mutations that affect viral replication in H5N1 influenza viruses isolated from pigeons. J Gen Virol. 2017;98:6–17.
  • Feng X, Wang Z, Shi J, et al. Glycine at position 622 in PB1 contributes to the virulence of H5N1 avian influenza virus in mice. J Virol. 2016;90:1872–1879.
  • Song J, Xu J, Shi J, et al. Synergistic effect of S224P and N383D substitutions in the pa of H5N1 avian influenza virus contributes to mammalian adaptation. Sci Rep. 2015;5:10510.
  • Tada T, Suzuki K, Sakurai Y, et al. Np body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens. J Virol. 2011;85:1834–1846.
  • Wasilenko JL, Sarmento L, Pantin-Jackwood MJ. A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens. Arch Virol. 2009;154:969–979.
  • Fan S, Deng G, Song J, et al. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology. 2009;384:28–32.
  • Nao N, Kajihara M, Manzoor R, et al. A single amino acid in the M1 protein responsible for the different pathogenic potentials of H5N1 highly pathogenic avian influenza virus strains. Plos One. 2015;10:e0137989.
  • Kuo RL, Krug RM. Influenza a virus polymerase is an integral component of the CPSF30-NS1A protein complex in infected cells. J Virol. 2009;83:1611–1616.
  • Li Z, Jiang Y, Jiao P, et al. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J Virol. 2006;80:11115–11123.
  • Jiang W, Tian W, Hou G, et al. Analysis of swan H5N8 avian influenza in holy lake of Shanxi province and the current virus lingeage of H5 subtype avian influenza. China Animal Health Inspection. 2017;34:14–17.
  • Ma L, Jin T, Wang H, et al. Two reassortant types of highly pathogenic H5N8 avian influenza virus from wild birds in central China in 2016. Emerg Microbes Infect. 2018;7:14.
  • Lee DH, Sharshov K, Swayne DE, et al. Novel reassortant clade 2.3.4.4 avian influenza A(H5N8) virus in wild aquatic birds, russia, 2016. Emerg Infect Dis. 2017;23:359–360.
  • Shin DL, Siebert U, Lakemeyer J, et al. Highly pathogenic avian influenza A(H5N8) virus in gray seals, baltic Sea. Emerg Infect Dis. 2019;25:2295–2298.