2,136
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Evidence of pediatric sepsis caused by a drug resistant Lactococcus garvieae contaminated platelet concentrate

, , , , , , , , , , , , , ORCID Icon, & show all
Pages 1325-1334 | Received 14 Jan 2022, Accepted 24 Apr 2022, Published online: 23 May 2022

References

  • Collins MD, Farrow JAE, Phillips BA, et al. Streptococcus garvieae sp. nov. and Streptococcus plantarum sp. nov. J Gen Microbiol. 1983;129:3427–3431. DOI:10.1099/00221287-129-11-3427.
  • Vendrell D, Balcázar JL, Ruiz-Zarzuela I, et al. Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis 2006;29:177–198. DOI:10.1016/j.cimid.2006.06.003.
  • Tariq EF, Irshad Y, Khalil HB, et al. Urinary tract infection caused by the novel pathogen, Lactococcus garvieae: a case report. Cureus. 2020;12:e9462. DOI:10.7759/cureus.9462.
  • Teixeira LM, Merquior VLC, Vianni MDCE, et al. Phenotypic and genotypic characterization of atypical Lactococcus garvieae strains isolated from water buffalos with subclinical mastitis and confirmation of L. garvieae as a senior subjective synonym of Enterococcus seriolicida. Int J Syst Bacteriol. 1996;46:664–668. DOI:10.1099/00207713-46-3-664.
  • Tejedor JL, Vela AI, Gibello A, et al. A genetic comparison of pig, cow and trout isolates of Lactococcus garvieae by PFGE analysis. Lett Appl Microbiol. 2011;53:614–619. DOI:10.1111/j.1472-765X.2011.03153.x.
  • Wang CYC, Shie HS, Chen SC, et al. Lactococcus garvieae infections in humans: possible association with aquaculture outbreaks. Int J Clin Pract. 2007;61:68–73. DOI:10.1111/j.1742-1241.2006.00855.x.
  • Gibello A, Galán-Sánchez F, Blanco MM, et al. The zoonotic potential of Lactococcus garvieae: an overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods. Res Vet Sci. 2016;109:59–70. DOI:10.1016/j.rvsc.2016.09.010.
  • Elliott JA, Collins MD, Pigott NE, et al. Differentiation of Lactococcus lactis and Lactococcus garvieae from humans by comparison of whole-cell protein patterns. J Clin Microbiol 1991;29:2731–2734. DOI:10.1128/jcm.29.12.2731-2734.1991.
  • Malek A, De La Hoz A, Gomez-Villegas SI, et al. Lactococcus garvieae, an unusual pathogen in infective endocarditis: case report and review of the literature. BMC Infect Dis. 2019;19:301. DOI:10.1186/s12879-019-3912-8.
  • Aubin GG, Bémer P, Guillouzouic A, et al. First report of a hip prosthetic and joint infection caused by Lactococcus garvieae in a woman fishmonger. J Clin Microbiol. 2011;49:2074–2076. DOI:10.1128/JCM.00065-11.
  • Mofredj A, Baraka D, Cadranel JF, et al. Lactococcus garvieae septicemia with liver abscess in an immunosuppressed patient [5]. Am J Med. 2000;109:513–514. DOI:10.1016/S0002-9343(00)00534-9.
  • Vinh DC, Nichol KA, Rand F, et al. Native-valve bacterial endocarditis caused by Lactococcus garvieae. Diagn Microbiol Infect Dis. 2006;56:91–94. DOI:10.1016/j.diagmicrobio.2006.02.010.
  • Nakamura S, Nakai K, Sakata M, et al. Recipient sepsis caused by Lactococcus garvieae contamination of platelets from a donor with colon cancer. Vox Sang. 2019;114:182–184. DOI:10.1111/vox.12740.
  • Lafolie J, Labbé A, L’Honneur AS, et al. Assessment of blood enterovirus PCR testing in paediatric populations with fever without source, sepsis-like disease, or suspected meningitis: a prospective, multicentre, observational cohort study. Lancet Infect Dis. 2018;18:1385–1396. DOI:10.1016/S1473-3099(18)30479-1.
  • Casado-Flores J, Blanco-Quirós A, Asensio J, et al. Serum procalcitonin in children with suspected sepsis: a comparison with C-reactive protein and neutrophil count. Pediatr Crit Care Med. 2003;4:190–195. DOI:10.1097/01.PCC.0000059420.15811.2D.
  • Jackman SD, Vandervalk BP, Mohamadi H, et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 2017;27:768–777. DOI:10.1101/gr.214346.116.
  • Gurevich A, Saveliev V, Vyahhi N, et al. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. DOI:10.1093/bioinformatics/btt086.
  • Shakya M, Ahmed SA, Davenport KW, et al. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci Rep.2020;10:1–15. DOI:10.1038/s41598-020-58356-1.
  • Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic Era. Mol Biol Evol. 2020;37:1530–1534. DOI:10.1093/MOLBEV/MSAA015.
  • Kozlov AM, Darriba D, Flouri T, et al. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. DOI:10.1093/bioinformatics/btz305.
  • Suchard MA, Lemey P, Baele G, et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016. DOI:10.1093/VE/VEY016.
  • Eraclio G, Ricci G, Fortina MG. Insertion sequence elements in Lactococcus garvieae. Gene. 2015;555:291–296. DOI:10.1016/j.gene.2014.11.019.
  • Aguado-Urda M, López-Campos GH, Blanco MM, et al. Genome sequence of Lactococcus garvieae 21881, isolated in a case of human septicemia. J Bacteriol. 2011;193:4033–4034. DOI:10.1128/JB.05090-11.
  • Maki T, Santos MD, Kondo H, et al. A transferable 20-kilobase multiple drug resistance-conferring R plasmid (pKL0018) from a fish pathogen (Lactococcus garvieae)ls highly homologous to a conjugative multiple drug resistance-conferring enterococcal plasmid. Appl Environ Microbiol. 2009;75:3370–3372. DOI:10.1128/AEM.00039-09.
  • Aguado-Urda M, Gibello A, Blanco MM, et al. Characterization of plasmids in a human clinical strain of Lactococcus garvieae. PLoS ONE 2012;7:e40119. DOI:10.1371/journal.pone.0040119.
  • Galata V, Fehlmann T, Backes C, et al. PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res. 2019;47:D195–D202. DOI:10.1093/nar/gky1050.
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. DOI:10.1093/bioinformatics/btp352.
  • Segata N, Waldron L, Ballarini A, et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 2012;9:811–814. DOI:10.1038/nmeth.2066.
  • Truong DT, Franzosa EA, Tickle TL, et al. Metaphlan2 for enhanced metagenomic taxonomic profiling. Nat Methods 2015;12:902–903. DOI:10.1038/nmeth.3589.
  • Shi YZ, Yoshida T, Fujiwara A, et al. Characterization of lsa(D), a novel gene responsible for resistance to lincosamides, streptogramins A, and pleuromutilins in fish pathogenic Lactococcus garvieae Serotype II. Microb Drug Resist. 2021;27:301–310. DOI:10.1089/mdr.2020.0218.
  • Perreten V, Schwarz FV, Teuber M, et al. Mdt(A), a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactis and Escherichia coli. Antimicrob Agents Chemother. 2001;45:1109–1114. DOI:10.1128/AAC.45.4.1109-1114.2001.
  • Walther C, Rossano A, Thomann A, et al. Antibiotic resistance in Lactococcus species from bovine milk: presence of a mutated multidrug transporter mdt(A) gene in susceptible Lactococcus garvieae strains. Vet Microbiol. 2008;131:348–357. DOI:10.1016/j.vetmic.2008.03.008.
  • Ginn SL, Brown MH, Skurray RA. The TetA(K) tetracycline/H+ antiporter from Staphylococcus aureus: mutagenesis and functional analysis of motif C. J Bacteriol.2000;182:1492–1498. DOI:10.1128/JB.182.6.1492-1498.2000.
  • De Jesus M, Jin J, Guffanti AA, et al. Importance of the GP dipeptide of the antiporter motif and other membrane-embedded proline and glycine residues in tetracycline efflux protein Tet(L). Biochemistry. 2005;44:12896–12904. DOI:10.1021/bi050762c.
  • David B, Duchêne MC, Haustenne GL, et al. PBP2b plays a key role in both peripheral growth and septum positioning in Lactococcus lactis. PLoS ONE. 2018;13:e0198014. DOI:10.1371/journal.pone.0198014.
  • Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev. 2008;32:361–385. DOI:10.1111/j.1574-6976.2007.00095.x.
  • Arthur M, Depardieu F, Reynolds P, et al. Moderate-level resistance to glycopeptide LY333328 mediated by genes of the vanA and vanB clusters in enterococci. Antimicrob Agents Chemother. 1999;43:1875–1880. DOI:10.1128/aac.43.8.1875.
  • Vimberg V, Zieglerová L, Buriánková K, et al. Vanz reduces the binding of lipoglycopeptide antibiotics to Staphylococcus aureus and Streptococcus pneumoniae cells. Front Microbiol. 2020;11. DOI:10.3389/fmicb.2020.00566.
  • Kelleher P, Mahony J, Bottacini F, et al. The lactococcus lactis pan-plasmidome. Front Microbiol. 2019;10:707. DOI:10.3389/fmicb.2019.00707.
  • Lebeer S, Claes I, Tytgat HLP, et al. Functional analysis of lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl Environ Microbiol. 2012;78:185–193. DOI:10.1128/AEM.06192-11.
  • Von Ossowski I, Reunanen J, Satokari R, et al. Mucosal adhesion properties of the probiotic lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol. 2010;76:2049–2057. DOI:10.1128/AEM.01958-09.
  • Eraclio G, Fortina MG, Labrie SJ, et al. Characterization of prophages of Lactococcus garvieae. Sci Rep. 2017;7:1856. DOI:10.1038/s41598-017-02038-y.
  • Kozakai M, Matsumoto M, Matsumoto C, et al. First report of the isolation of Lactococcus garvieae from a platelet concentrate in Japan. Transfusion. 2016;56:2602–2606. DOI:10.1111/trf.13752.
  • Pietersz RNI, Reesink HW, Panzer S, et al. Bacterial contamination in platelet concentrates. Vox Sang. 2014;106:256–283. DOI:10.1111/vox.12098.
  • Dodd RY. Emerging pathogens and their implications for the blood supply and transfusion transmitted infections. Br J Haematol. 2012;159:135–142. DOI:10.1111/BJH.12031.
  • Kreuger AL, Middelburg RA, Kerkhoffs JLH, et al. Storage medium of platelet transfusions and the risk of transfusion-transmitted bacterial infections. Transfusion. 2017;57:657–660. DOI:10.1111/trf.13969.
  • Alpern ER, Stanley RM, Gorelick MH, et al. Epidemiology of a pediatric emergency medicine research network: The PECARN core data project. Pediatr Emerg Care. 2006;22:689–699. DOI:10.1097/01.pec.0000236830.39194.c0.
  • Blajchman MA, Beckers EAM, Dickmeiss E, et al. Bacterial detection of platelets: current problems and possible resolutions. Transfus Med Rev. 2005;19:259–272. DOI:10.1016/j.tmrv.2005.05.002
  • Fda, Cber. Fatalities reported to FDA following blood collection and transfusion annual summary for fiscal year 2019. 2019.
  • Sahu KK, Sherif AA, Syed MP, et al. A rare cause of sepsis: Lactococcus garvieae. QJM. 2019;112:447–448. DOI:10.1093/qjmed/hcz078.
  • Nadrah K, Cerar T, Papst L, et al. Lactococcus garvieae septicaemia in a patient with artificial heart valves. Wien Klin Wochenschr. 2011;123:677–679. DOI:10.1007/s00508-011-0059-z.
  • Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 2010;6:1–2. DOI:10.1371/journal.ppat.1000949.
  • Salighehzadeh R, Sharifiyazdi H, Akhlaghi M, et al. Serotypes, virulence genes and polymorphism of capsule gene cluster in Lactococcus garvieae isolated from diseased rainbow trout (Oncorhynchus mykiss) and mugger crocodile (Crocodylus palustris) in Iran. Iran J Vet Res. 2020;21:26–32.
  • Eraclio G, Ricci G, Quattrini M, et al. Detection of virulence-related genes in Lactococcus garvieae and their expression in response to different conditions. Folia Microbiol. 2018;63:291–298. DOI:10.1007/s12223-017-0566-z.
  • Devi SM, Halami PM. Diversity and evolutionary aspects of mucin binding (MucBP) domain repeats among Lactobacillus plantarum group strains through comparative genetic analysis. Syst Appl Microbiol. 2017;40:237–244. DOI:10.1016/j.syapm.2017.03.005.
  • Galloway-Peña JR, Liang X, Singh KV, et al. The identification and functional characterization of WxL proteins from Enterococcus faecium reveal surface proteins involved in extracellular matrix interactions. J Bacteriol. 2015;197:882–892. DOI:10.1128/JB.02288-14.
  • Walther-Wenke G. Incidence of bacterial transmission and transfusion reactions by blood components. Clin Chem Lab Med. 2008;46:919–925. DOI:10.1515/CCLM.2008.151.
  • Liumbruno G, Bennardello F, Lattanzio A, et al. Raccomandazioni SIMTI sul corretto utilizzo degli emocomponenti e dei plasmaderivati. Società Italiana di Medicina Trasfusionale e Immunoematologia. 2008;1:37–39.
  • Facklam R, Elliott JA. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev. 1995;8:479–495. DOI:10.1128/cmr.8.4.479.
  • Haesebaert J, Bénet T, Michallet M, et al. Septic shock during platelet transfusion in a patient with acute myeloid leukaemia. BMJ Case Rep. 2013;2013:bcr2013010412. DOI:10.1136/bcr-2013-010412.