2,497
Views
8
CrossRef citations to date
0
Altmetric
Coronaviruses

SARS-CoV-2 detection and inactivation in water and wastewater: review on analytical methods, limitations and future research recommendations

ORCID Icon, , , &
Article: 2222850 | Received 30 Jan 2023, Accepted 03 Jun 2023, Published online: 21 Jun 2023

References

  • Corpuz MVA, Buonerba A, Zarra T, et al. Advances in virus detection methods for wastewater-based epidemiological applications. Case Stud Chem Environ Eng. 2022;6:100238, doi:10.1016/j.cscee.2022.100238
  • Karthikeyan S, Levy JI, De Hoff P, et al. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature. 2022;609(7925):101–108. doi:10.1038/s41586-022-05049-6
  • Uddin M, Mustafa F, Rizvi TA, et al. SARS-CoV-2/COVID-19: viral genomics, epidemiology, vaccines, and therapeutic interventions. Viruses. 2020;12(5):526, doi:10.3390/v12050526
  • Tang A, Tong Z-D, Wang H-L, et al. Detection of novel coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerging Infect Dis. 2020;26(6):1337, doi:10.3201/eid2606.200301
  • Li X, Kulandaivelu J, Guo Y, et al. SARS-CoV-2 shedding sources in wastewater and implications for wastewater-based epidemiology. J Hazard Mater. 2022;432:128667, doi:10.1016/j.jhazmat.2022.128667
  • Bogler A, Packman A, Furman A, et al. Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nat Sustainability. 2020;3(12):981–990. doi:10.1038/s41893-020-00605-2
  • Gundy PM, Gerba CP, Pepper IL. Survival of coronaviruses in water and wastewater. Food Environ Virol. 2008;1(1):10.
  • Wong SCC, Chan JKC, Lee KC, et al. Development of a quantitative assay for SARS coronavirus and correlation of GAPDH mRNA with SARS coronavirus in clinical specimens. J Clin Pathol. 2005;58(3):276, doi:10.1136/jcp.2004.016592
  • Wang X-W, Li J-S, Guo T-K, et al. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan Hospital and the 309th Hospital. J Virol Methods. 2005;128(1-2):156–161. doi:10.1016/j.jviromet.2005.03.022
  • Wu F, Zhang J, Xiao A, et al. Data-Driven models reveal mutant cell behaviors important for myxobacterial aggregation. mSystems. 2020;5(4):e00614–20. doi:10.1128/mSystems.00518-20
  • Majumder A, Gupta AK, Ghosal PS, et al. A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. J Environ Chem Eng. 2021;9(2):104812, doi:10.1016/j.jece.2020.104812
  • Wang X-W, Li J-S, Jin M, et al. Study on the resistance of severe acute respiratory syndrome-associated coronavirus. J Virol Methods. 2005;126(1):171–177.
  • Wang J, Feng H, Zhang S, et al. SARS-CoV-2 RNA detection of hospital isolation wards hygiene monitoring during the Coronavirus Disease 2019 outbreak in a Chinese hospital. Int J Infect Dis. 2020;94:103–106. doi:10.1016/j.ijid.2020.04.024
  • Zhang D, Ling H, Huang X, et al. Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Sci Total Environ. 2020;741:140445, doi:10.1016/j.scitotenv.2020.140445
  • Kam K-Q, Yung CF, Cui L, et al. A well infant with coronavirus disease 2019 with high viral load. Clin Infect Dis. 2020;71(15):847–9.
  • Kumar M, Patel AK, Shah AV, et al. First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. Sci Total Environ. 2020;746:141326.
  • Kitajima M, Iker BC, Rachmadi AT, et al. Quantification and genetic analysis of salivirus/klassevirus in wastewater in Arizona, USA. Food Environ Virol. 2014;6(3):213–216. doi:10.1007/s12560-014-9148-2
  • Rimoldi SG, Stefani F, Gigantiello A, et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci Total Environ. 2020;744:140911, doi:10.1016/j.scitotenv.2020.140911
  • Shi J, Li X, Zhang S, et al. Enhanced decay of coronaviruses in sewers with domestic wastewater. Sci Total Environ. 2022;813:151919, doi:10.1016/j.scitotenv.2021.151919
  • John DE, Rose JB. Review of factors affecting microbial survival in groundwater. Environ Sci Technol 2005;39(19):7345–7356. doi:10.1021/es047995w
  • Medema G, Heijnen L, Elsinga G, et al. Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in The Netherlands. Environ Sci Technol Lett. 2020;7(7):511–516. doi:10.1021/acs.estlett.0c00357
  • Li X, Zhang S, Shi J, et al. Uncertainties in estimating SARS-CoV-2 prevalence by wastewater-based epidemiology. Chem Eng J. 2021;415:129039, doi:10.1016/j.cej.2021.129039
  • Sharkey ME, Kumar N, Mantero AMA, et al. Lessons learned from SARS-CoV-2 measurements in wastewater. Sci Total Environ 2021;798:149177, doi:10.1016/j.scitotenv.2021.149177
  • D’Agostino Y, Rocco T, Ferravante C, et al. Rapid and sensitive detection of SARS-CoV-2 variants in nasopharyngeal swabs and wastewaters. Diagn Microbiol Infect Dis 2022;102(4):115632, doi:10.1016/j.diagmicrobio.2021.115632
  • Hart OE, Halden RU. Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges. Sci Total Environ. 2020;730:138875, doi:10.1016/j.scitotenv.2020.138875
  • Li X, Kulandaivelu J, Zhang S, et al. Data-driven estimation of COVID-19 community prevalence through wastewater-based epidemiology. Sci Total Environ. 2021;789:147947, doi:10.1016/j.scitotenv.2021.147947
  • Jahn K, Dreifuss D, Topolsky I, et al. Early detection and surveillance of SARS-CoV-2 genomic variants in wastewater using COJAC. Nat Microbiol. 2022;7(8):1151–1160. doi:10.1038/s41564-022-01185-x
  • Ahmed W, Bertsch PM, Bivins A, et al. Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Sci Total Environ. 2020;739:139960, doi:10.1016/j.scitotenv.2020.139960
  • Brouwer AF, Eisenberg JNS, Pomeroy CD, et al. Epidemiology of the silent polio outbreak in Rahat, Israel, based on modeling of environmental surveillance data. Proc Natl Acad Sci USA. 2018;115(45):E10625–E10E33.
  • Gerba CP, Betancourt WQ, Kitajima M. How much reduction of virus is needed for recycled water: A continuous changing need for assessment? Water Res 2017;108:25–31. doi:10.1016/j.watres.2016.11.020
  • Ahmed W, Kitajima M, Tandukar S, et al. Recycled water safety: Current status of traditional and emerging viral indicators. Curr Opin Environ Sci Health. 2020;16:62–72. doi:10.1016/j.coesh.2020.02.009
  • La Rosa G, Bonadonna L, Lucentini L, et al. Coronavirus in water environments: Occurrence, persistence and concentration methods - A scoping review. Water Res 2020;179:115899, doi:10.1016/j.watres.2020.115899
  • Balboa S, Mauricio-Iglesias M, Rodriguez S, et al. The fate of SARS-COV-2 in WWTPS points out the sludge line as a suitable spot for detection of COVID-19. Sci Total Environ. 2021;772:145268, doi:10.1016/j.scitotenv.2021.145268
  • Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3):2000045.
  • Zhang S, Li X, Shi J, et al. Analytical performance comparison of four SARS-CoV-2 RT-qPCR primer-probe sets for wastewater samples. Sci Total Environ. 2022;806:150572, doi:10.1016/j.scitotenv.2021.150572
  • Heijnen L, Elsinga G, de Graaf M, et al. Droplet digital RT-PCR to detect SARS-CoV-2 signature mutations of variants of concern in wastewater. Sci Total Environ. 2021;799:149456, doi:10.1016/j.scitotenv.2021.149456
  • Jahne MA, Brinkman NE, Keely SP, et al. Droplet digital PCR quantification of norovirus and adenovirus in decentralized wastewater and graywater collections: Implications for onsite reuse. Water Res 2020;169:115213, doi:10.1016/j.watres.2019.115213
  • Lu D, Zhu DZ, Gan H, et al. Prospects and challenges of using electrochemical immunosensors as an alternative detection method for SARS-CoV-2 wastewater-based epidemiology. Sci Total Environ. 2021;777:146239, doi:10.1016/j.scitotenv.2021.146239
  • Layqah LA, Eissa S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Mikrochim Acta. 2019;186(4):224, doi:10.1007/s00604-019-3345-5
  • Wong Y-P, Othman S, Lau Y-L, et al. Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. J Appl Microbiol 2018;124(3):626–643. doi:10.1111/jam.13647
  • Huang WE, Lim B, Hsu C-C, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb Biotechnol. 2020;13(4):950–961. doi:10.1111/1751-7915.13586
  • Hamouda M, Mustafa F, Maraqa M, et al. Wastewater surveillance for SARS-CoV-2: Lessons learnt from recent studies to define future applications. Sci Total Environ 2021;759:143493, doi:10.1016/j.scitotenv.2020.143493
  • Navarro A, Gómez L, Sanseverino I, et al. SARS-CoV-2 detection in wastewater using multiplex quantitative PCR. Sci Total Environ 2021;797:148890, doi:10.1016/j.scitotenv.2021.148890
  • Tsou J-H, Liu H, Stass SA, et al. Rapid and sensitive detection of SARS-CoV-2 using clustered regularly interspaced short palindromic repeats. Biomedicines. 2021;9(3):239.
  • Alafeef M, Dighe K, Moitra P, et al. Monitoring the viral transmission of SARS-CoV-2 in still waterbodies using a lanthanide-doped carbon nanoparticle-based sensor array. ACS Sustain Chem Eng. 2022;10(1):245–258. doi:10.1021/acssuschemeng.1c06066
  • Peccia J, Zulli A, Brackney DE, et al. Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat Biotechnol 2020;38(10):1164–1167. doi:10.1038/s41587-020-0684-z
  • Smyth DS, Trujillo M, Gregory DA, et al. Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. Nat Commun. 2022;13(1):635, doi:10.1038/s41467-022-28246-3
  • Amman F, Markt R, Endler L, et al. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat Biotechnol 2022;40(12):1814–1822. doi:10.1038/s41587-022-01387-y
  • Ahmed W, Angel N, Edson J, et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ. 2020;728:138764, doi:10.1016/j.scitotenv.2020.138764
  • Ahmed F, Islam MA, Kumar M, et al. First detection of SARS-CoV-2 genetic material in the vicinity of COVID-19 isolation centre through wastewater surveillance in Bangladesh. medRxiv. 2020;8(18):20194696.
  • Aguiar-Oliveira MDL, Campos A, R. Matos A, et al. Wastewater-Based epidemiology (WBE) and viral detection in polluted surface water: A valuable tool for COVID-19 surveillance—A brief review. Int J Environ Res Public Health. 2020;17(24):9251, doi:10.3390/ijerph17249251
  • D’Aoust PM, Mercier E, Montpetit D, et al. Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence. Water Res. 2021;188:116560, doi:10.1016/j.watres.2020.116560
  • Ampuero M, Valenzuela S, Valiente-Echeverria F, et al. SARS-CoV-2 detection in sewage in Santiago, Chile-preliminary results. MedRxiv. 2020;7: 2020-07.
  • Mlejnkova H, Sovova K, Vasickova P, et al. Preliminary study of SARS-CoV-2 occurrence in wastewater in the Czech Republic. Int J Environ Res Public Health. 2020;17(15):5508, doi:10.3390/ijerph17155508
  • Guerrero-Latorre L, Ballesteros I, Villacrés-Granda I, et al. SARS-CoV-2 in river water: Implications in low sanitation countries. Sci Total Environ. 2020;743:140832, doi:10.1016/j.scitotenv.2020.140832
  • Wurtzer S, Marechal V, Mouchel J-M, et al. Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters. MedRxiv. 2020. doi:10.1101/2020.04.12.20062679
  • Westhaus S, Weber F-A, Schiwy S, et al. Detection of SARS-CoV-2 in raw and treated wastewater in Germany – Suitability for COVID-19 surveillance and potential transmission risks. Sci Total Environ. 2021;751:141750, doi:10.1016/j.scitotenv.2020.141750
  • La Rosa G, Iaconelli M, Mancini P, et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci Total Environ. 2020;736:139652, doi:10.1016/j.scitotenv.2020.139652
  • Sharif S, Ikram A, Khurshid A, et al. Detection of SARs-CoV-2 in wastewater, using the existing environmental surveillance network: an epidemiological gateway to an early warning for COVID-19 in communities. MedRxiv. 2020. doi:10.1101/2020.06.03.20121426
  • Randazzo W, Cuevas-Ferrando E, Sanjuán R, et al. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. Int J Hyg Environ Health. 2020;230:113621, doi:10.1016/j.ijheh.2020.113621
  • Kocamemi BA, Kurt H, Sait A, et al. SARS-CoV-2 detection in Istanbul wastewater treatment plant sludges. MedRxiv. 2020. doi:10.1101/2020.05.12.20099358
  • Zaneti RN, Girardi V, Spilki FR, et al. Quantitative microbial risk assessment of SARS-CoV-2 for workers in wastewater treatment plants. Sci Total Environ. 2021;754:142163, doi:10.1016/j.scitotenv.2020.142163
  • Zhang X, Ji Z, Yue Y, et al. Infection risk assessment of COVID-19 through aerosol transmission: a case study of south China seafood market. Environ Sci Technol 2021;55(7):4123–4133. doi:10.1021/acs.est.0c02895
  • Xiling G, Yin C, Ling W, et al. In vitro inactivation of SARS-CoV-2 by commonly used disinfection products and methods. Sci Rep. 2021;11(1):2418, doi:10.1038/s41598-021-82148-w
  • Kong J, Lu Y, Ren Y, et al. The virus removal in UV irradiation, ozonation and chlorination. Water Cycle. 2021;2:23–31. doi:10.1016/j.watcyc.2021.05.001
  • Qiu Y, Li Q, Lee BE, et al. UV inactivation of human infectious viruses at two full-scale wastewater treatment plants in Canada. Water Res 2018;147:73–81. doi:10.1016/j.watres.2018.09.057
  • Sigmon C, Shin G-A, Mieog J, et al. Establishing surrogate–virus relationships for ozone disinfection of wastewater. Environ Eng Sci 2015;32(6):451–460. doi:10.1089/ees.2014.0496
  • Samineni L, Xiong B, Chowdhury R, et al. 7 log virus removal in a simple functionalized sand filter. Environ Sci Technol. 2019;53(21):12706–12714. doi:10.1021/acs.est.9b03734
  • Delanka-Pedige HMK, Munasinghe-Arachchige SP, Zhang Y, et al. Bacteria and virus reduction in secondary treatment: Potential for minimizing post disinfectant demand. Water Res 2020;177:115802, doi:10.1016/j.watres.2020.115802
  • Prado T, Silva DM, Guilayn WC, et al. Quantification and molecular characterization of enteric viruses detected in effluents from two hospital wastewater treatment plants. Water Res 2011;45(3):1287–1297. doi:10.1016/j.watres.2010.10.012
  • Vickers JC, Dummer M, Le T, et al. Removal of MS-2 coliphage in full-scale reverse osmosis systems. AWWA Water Science. 2019 2019;1(6):e1158.
  • Al Aani S, Mustafa TN, Hilal N. Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. J Water Process Eng. 2020;35:101241, doi:10.1016/j.jwpe.2020.101241
  • O’Brien E, Xagoraraki I. Removal of viruses in membrane bioreactors. J Environ Eng. 2020;146(7):03120007, doi:10.1061/(ASCE)EE.1943-7870.0001743
  • Wattanachira L, Rakruam P, Yanthongyu P, et al. Bacteriophage removal efficiency of In-line coagulation with ceramic membrane filtration. Eng J. 2017;21(4):1–9. doi:10.4186/ej.2017.21.4.1
  • Németh Z, Szekeres GP, Schabikowski M, et al. Enhanced virus filtration in hybrid membranes with MWCNT nanocomposite. R Soc Open Sci. 2019;6(1):181294. doi:10.1098/rsos.181294
  • Suzuki T, Okamura M, Niinae M. Plugging nanoscale imperfections in the polyamide active layer of thin-film composite reverse osmosis membrane to inhibit advective solute transport. Desalination. 2020;487:114506, doi:10.1016/j.desal.2020.114506