3,466
Views
7
CrossRef citations to date
0
Altmetric
Tuberculosis

The interaction of macrophages and CD8 T cells in bronchoalveolar lavage fluid is associated with latent tuberculosis infection

, , , , , , , , , & show all
Article: 2239940 | Received 23 Feb 2023, Accepted 18 Jul 2023, Published online: 02 Aug 2023

References

  • W.H.O. Gtrhwwitg-t. Global tuberculosis report 2021. https://www.who.int/teams/global-tuberculosi. 2021.
  • Chai Q, Wang L, Liu CH, et al. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol. 2020 Sep;17(9):901–913. doi:10.1038/s41423-020-0502-z
  • Esaulova E, Das S, Singh DK, et al. The immune landscape in tuberculosis reveals populations linked to disease and latency. Cell Host Microbe. 2021 Feb 10;29(2):165–78e8. doi:10.1016/j.chom.2020.11.013
  • Rankin AN, Hendrix SV, Naik SK, et al. Exploring the role of low-density neutrophils during Mycobacterium tuberculosis infection. Front Cell Infect Microbiol. 2022;12:901590. doi:10.3389/fcimb.2022.901590
  • Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021 Feb 17;12(1):1088. doi:10.1038/s41467-021-21246-9
  • Zhang B, Zhang Y, Xiong L, et al. CD127 imprints functional heterogeneity to diversify monocyte responses in inflammatory diseases. J Exp Med. 2022 Feb 7;219(2). doi:10.1084/jem.20211191
  • Cai Y, Wang Y, Shi C, et al. Single-cell immune profiling reveals functional diversity of T cells in tuberculous pleural effusion. J Exp Med. 2022;219(3): e20211777. doi:10.1084/jem.20211777
  • Ahmad F, Rani A, Alam A, et al. Macrophage: a cell with many faces and functions in tuberculosis. Front Immunol. 2022;13:747799. doi:10.3389/fimmu.2022.747799
  • Cadena AM, Fortune SM, Flynn JL. Heterogeneity in tuberculosis. Nat Rev Immunol. 2017 Nov;17(11):691–702. doi:10.1038/nri.2017.69
  • McClean CM, Tobin DM. Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis. 2016 Oct;74(7). doi:10.1093/femspd/ftw068
  • Pisu D, Huang L, Narang V, et al. Single cell analysis of M. tuberculosis phenotype and macrophage lineages in the infected lung. J Exp Med. 2021 Sep 6;218(9). doi:10.1084/jem.20210615
  • Pisu D, Huang L, Grenier JK, et al. Dual RNA-Seq of Mtb-infected macrophages in vivo reveals ontologically distinct host-pathogen interactions. Cell Rep. 2020 Jan 14;30(2):335–50e4. doi:10.1016/j.celrep.2019.12.033
  • Behar SM, Martin CJ, Booty MG, et al. Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol. 2011 May;4(3):279–287. doi:10.1038/mi.2011.3
  • Lam A, Prabhu R, Gross CM, et al. Role of apoptosis and autophagy in tuberculosis. Am J Physiol Lung Cell Mol Physiol. 2017 Aug 1;313(2):L218–LL29. doi:10.1152/ajplung.00162.2017
  • Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol. 2017 Dec;14(12):963–975. doi:10.1038/cmi.2017.88
  • Berry A, Matthews L, Jangani M, et al. Interferon-inducible factor 16 is a novel modulator of glucocorticoid action. FASEB J. 2010 Jun;24(6):1700–1713. doi:10.1096/fj.09-139998
  • Zak DE, Penn-Nicholson A, Scriba TJ, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet. 2016 Jun 4;387(10035):2312–2322. doi:10.1016/S0140-6736(15)01316-1
  • Feng Y, Dorhoi A, Mollenkopf HJ, et al. Platelets direct monocyte differentiation into epithelioid-like multinucleated giant foam cells with suppressive capacity upon mycobacterial stimulation. J Infect Dis. 2014 Dec 1;210(11):1700–1710. doi:10.1093/infdis/jiu355
  • Carrere-Kremer S, Kolia-Diafouka P, Pisoni A, et al. QuantiFERON-TB gold plus assay in patients with latent vs. active tuberculosis in a low incidence setting: level of IFN-gamma, CD4/CD8 responses, and release of IL-2, IP-10, and MIG. Front Microbiol. 2022;13:825021. doi:10.3389/fmicb.2022.825021
  • Ali ZA, Mankhi AA, Ad'hiah AH. Significance of the chemokine CXCL10 and human beta-defensin-3 as biomarkers of pulmonary tuberculosis. Tuberculosis (Edinb). 2021 May;128:102078. doi:10.1016/j.tube.2021.102078
  • Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001;19:93–129. doi:10.1146/annurev.immunol.19.1.93
  • Mogues T, Goodrich ME, Ryan L, et al. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med. 2001 Feb 5;193(3):271–280. doi:10.1084/jem.193.3.271
  • Barber DL, Mayer-Barber KD, Feng CG, et al. CD4 t cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J Immunol. 2011 Feb 1;186(3):1598–1607. doi:10.4049/jimmunol.1003304
  • Woodworth JS, Behar SM. Mycobacterium tuberculosis-specific CD8+ T cells and their role in immunity. Crit Rev Immunol. 2006;26(4):317–352. doi:10.1615/CritRevImmunol.v26.i4.30
  • van Pinxteren LA, Cassidy JP, Smedegaard BH, et al. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol. 2000 Dec;30(12):3689–3698. doi:10.1002/1521-4141(200012)30:12<3689::AID-IMMU3689>3.0.CO;2-4
  • Li X, Zhou Q, Yang WB, et al. Pleural mesothelial cells promote expansion of IL-17-producing CD8+ T cells in tuberculous pleural effusion. J Clin Immunol. 2013 May;33(4):775–787. doi:10.1007/s10875-012-9860-3