1,879
Views
2
CrossRef citations to date
0
Altmetric
Influenza infections

Emergence of a new designated clade 16 with significant antigenic drift in hemagglutinin gene of H9N2 subtype avian influenza virus in eastern China

, , , , , , , , , , , , , & show all
Article: 2249558 | Received 25 May 2023, Accepted 14 Aug 2023, Published online: 28 Aug 2023

References

  • Smithies LK, Radloff DB, Friedell RW, et al. Two different type A influenza virus infections in turkeys in Wisconsin. I. 1965-66 outbreak. Avian Dis. 1969;13(3):603–606. DOI:10.2307/1588534
  • Peacock THP, James J, Sealy JE, et al. A global perspective on H9N2 avian influenza virus. Viruses. 2019;11(7):620. DOI:10.3390/v11070620
  • Chen PL, Zhang ZJ. Isolation and serological identification of avian influenza A virus from chickens. Chinese Poultry. 1997;11:4–6.
  • Gao X, Wang N, Chen Y, et al. Sequence characteristics and phylogenetic analysis of H9N2 subtype avian influenza A viruses detected from poultry and the environment in China, 2018. PeerJ. 2021;9:e12512. DOI:10.7717/peerj.12512
  • Guo J, Wang Y, Zhao C, et al. Molecular characterization, receptor binding property, and replication in chickens and mice of H9N2 avian influenza viruses isolated from chickens, peafowls, and wild birds in eastern China. Emerg Microbes Infect. 2021;10(1):2098–2112. DOI:10.1080/22221751.2021.1999778
  • Shi L, Yao Q, Gao Y, et al. Molecular evolution and amino acid characteristics of newly isolated H9N2 avian influenza viruses from Liaoning Province, China. J Vet Med Sci. 2020;82(1):101–108. DOI:10.1292/jvms.19-0421
  • Zhao Y-r, Zhao Y-z, Liu S-d, et al. Phylogenetic and epidemiological characteristics of H9N2 avian influenza viruses in Shandong Province, China from 2019 to 2021. J Integr Agric. 2023;22(3):881–896. DOI:10.1016/j.jia.2022.08.114
  • Bi Y, Chen Q, Wang Q, et al. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host Microbe. 2016;20(6):810–821. DOI:10.1016/j.chom.2016.10.022
  • Bi Y, Li J, Li S, et al. Dominant subtype switch in avian influenza viruses during 2016-2019 in China. Nat Commun. 2020;11(1):5909. DOI:10.1038/s41467-020-19671-3
  • Avian Influenza Weekly Update Number 889. Western Pacific Region: World Health Organization; 2023.
  • RahimiRad S, Alizadeh A, Alizadeh E, et al. The avian influenza H9N2 at avian-human interface: a possible risk for the future pandemics. J Res Med Sci. 2016;21(1):51. DOI:10.4103/1735-1995.187253
  • Gu M, Chen H, Li Q, et al. Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China. Vet Microbiol. 2014;174(3-4):309–315. DOI:10.1016/j.vetmic.2014.09.029
  • Shen YY, Ke CW, Li Q, et al. Novel reassortant avian influenza A(H5N6) viruses in humans, Guangdong, People’s Republic of China, 2015. Emerg Infect Dis. 2016;22(8):1507–1509. DOI:10.3201/eid2208.160146
  • Liu K, Ding P, Pei Y, et al. Emergence of a novel reassortant avian influenza virus (H10N3) in Eastern China with high pathogenicity and respiratory droplet transmissibility to mammals. Sci China Life Sci. 2022;65(5):1024–1035. DOI:10.1007/s11427-020-1981-5
  • Wang Y, Niu S, Zhang B, et al. The whole genome analysis for the first human infection with H10N3 influenza virus in China. J Infect. 2021; S0163-4453(21):00318-2.
  • Li P, Niu M, Li Y, et al. Human infection with H3N8 avian influenza virus: a novel H9N2-original reassortment virus. J Infect. 2022;85(6):e187–e189. DOI:10.1016/j.jinf.2022.08.033
  • Xia J, Cui JQ, He X, et al. Genetic and antigenic evolution of H9N2 subtype avian influenza virus in domestic chickens in southwestern China, 2013–2016. PLoS One. 2017;12(2):e0171564.
  • Carnaccini S, Perez DR. H9 influenza viruses: an emerging challenge. Cold Spring Harb Perspect Med. 2020;10(6):a038588.
  • Okamatsu M, Sakoda Y, Kishida N, et al. Antigenic structure of the hemagglutinin of H9N2 influenza viruses. Arch Virol. 2008;153(12):2189–2195. DOI:10.1007/s00705-008-0243-2
  • Peacock T, Reddy K, James J, et al. Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape. Sci Rep. 2016;6(1):18745. DOI:10.1038/srep18745
  • Peacock TP, Harvey WT, Sadeyen JR, et al. The molecular basis of antigenic variation among A(H9N2) avian influenza viruses. Emerg Microbes Infect. 2018;7(1):176. DOI:10.1038/s41426-018-0178-y
  • Wan Z, Ye J, Xu L, et al. Antigenic mapping of the hemagglutinin of an H9N2 avian influenza virus reveals novel critical amino acid positions in antigenic sites. J Virol. 2014;88(7):3898–3901. DOI:10.1128/JVI.03440-13
  • Zhu Y, Yang D, Ren Q, et al. Identification and characterization of a novel antigenic epitope in the hemagglutinin of the escape mutants of H9N2 avian influenza viruses. Vet Microbiol. 2015;178(1-2):144–149. DOI:10.1016/j.vetmic.2015.04.012
  • Pu J, Yin Y, Liu J, et al. Reassortment with dominant chicken H9N2 influenza virus contributed to the fifth H7N9 virus human epidemic. J Virol. 2021;95(11):e01578–20.
  • Wanwan Y, Hongrui C, Marc E, et al. Molecular and antigenic characterization of avian H9N2 viruses in southern China. Microbiol Spectr. 2022 2022;10(1):e0082221.
  • Zheng Y, Guo Y, Li Y, et al. The molecular determinants of antigenic drift in a novel avian influenza A (H9N2) variant virus. Virol J. 2022;19(1):26. DOI:10.1186/s12985-022-01755-9
  • Sun Y, Pu J, Jiang Z, et al. Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008. Vet. Microbiol. 2010;146:3–4.
  • Li C, Wang S, Bing G, et al. Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013. Emerg Microbes Infect. 2017;6(11):e106.
  • Wang J, Jin X, Hu J, et al. Genetic evolution characteristics of genotype G57 virus, A dominant genotype of H9N2 avian influenza virus. Front Microbiol. 2021;12:633835. DOI:10.3389/fmicb.2021.633835
  • Sun Y, Liu J. H9N2 influenza virus in China: a cause of concern. Protein Cell. 2015;6(1):18–25. DOI:10.1007/s13238-014-0111-7
  • Li C, Yu K, Tian G, et al. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology. 2005;340(1):70–83. DOI:10.1016/j.virol.2005.06.025
  • Brister JR, Ako-Adjei D, Bao Y, et al. NCBI viral genomes resource. Nucleic Acids Res. 2015;43:D571–D577. DOI:10.1093/nar/gku1207
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. DOI:10.1093/molbev/mst010
  • Kumar S, Stecher G, Li M, et al. Mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549. DOI:10.1093/molbev/msy096
  • Zhou ZJ, Qiu Y, Pu Y, et al. BioAider: an efficient tool for viral genome analysis and its application in tracing SARS-CoV-2 transmission. Sustain Cities Soc. 2020;63:102466. DOI:10.1016/j.scs.2020.102466
  • Drummond AJ, Suchard MA, Xie D, et al. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8):1969–1973. DOI:10.1093/molbev/mss075
  • Nguyen LT, Schmidt HA, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268-274. DOI:10.1093/molbev/msu300
  • Sagulenko P, Puller V, Neher RA. TreeTime: maximum-likelihood phylodynamic analysis. Virus Evol. 2018;4(1):vex042. DOI:10.1093/ve/vex042
  • Yu G. Using ggtree to visualize data on tree-like structures. Curr Protoc Bioinformatics. 2020;69(1):e96.
  • Prosperi MC, Ciccozzi M, Fanti I, et al. A novel methodology for large-scale phylogeny partition. Nat Commun. 2011;2(1):321. DOI:10.1038/ncomms1325
  • Smith DJ, Lapedes AS, de Jong JC, et al. Mapping the antigenic and genetic evolution of influenza virus. Science. 2004;305(5682):371–376. DOI:10.1126/science.1097211
  • Wu NC, Wilson IA. Influenza hemagglutinin structures and antibody recognition. Cold Spring Harb Perspect Med. 2020;10:8.
  • Qin T, Chen Y, Huangfu D, et al. PA-X protein of H9N2 subtype avian influenza virus suppresses the innate immunity of chicken bone marrow-derived dendritic cells. Poult Sci. 2023;102(1):102304. DOI:10.1016/j.psj.2022.102304
  • Zhang Q, Mu X, Dong H, et al. Pulmonary endothelium-derived PD-L1 induced by the H9N2 avian influenza virus inhibits the immune response of T cells. Virol J. 2020;17(1):92. DOI:10.1186/s12985-020-01341-x
  • Chang HP, Peng L, Chen L, et al. Avian influenza viruses (AIVs) H9N2 are in the course of reassorting into novel AIVs. J Zhejiang Univ Sci B. 2018;19(5):409–414. DOI:10.1631/jzus.B1700374
  • Chen LJ, Lin XD, Guo WP, et al. Diversity and evolution of avian influenza viruses in live poultry markets, free-range poultry and wild wetland birds in China. J Gen Virol. 2016;97(4):844–854. DOI:10.1099/jgv.0.000399
  • Mostafa A, Mahmoud SH, Shehata M, et al. Pa from a recent H9N2 (G1-like) avian influenza a virus (AIV) strain carrying lysine 367 confers altered replication efficiency and pathogenicity to contemporaneous H5N1 in mammalian systems. Viruses. 2020;12:9. DOI:10.3390/v12091046
  • Gu M, Xu L, Wang X, et al. Current situation of H9N2 subtype avian influenza in China. Vet Res. 2017;48(1):49. DOI:10.1186/s13567-017-0453-2
  • Wei Y, Xu G, Zhang G, et al. Antigenic evolution of H9N2 chicken influenza viruses isolated in China during 2009-2013 and selection of a candidate vaccine strain with broad cross-reactivity. Vet Microbiol. 2016;182:1–7. DOI:10.1016/j.vetmic.2015.10.031
  • Pu J, Wang S, Yin Y, et al. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proc Natl Acad Sci U S A. 2015;112(2):548–553. DOI:10.1073/pnas.1422456112
  • Bhat S, James J, Sadeyen JR, et al. Coinfection of chickens with H9N2 and H7N9 avian influenza viruses leads to emergence of reassortant H9N9 virus with increased fitness for poultry and a zoonotic potential. J Virol. 2022;96(5):e0185621. DOI:10.1128/jvi.01856-21
  • Cui H, de Jong MC, Beerens N, et al. Vaccination with inactivated virus against low pathogenic avian influenza subtype H9N2 does not prevent virus transmission in chickens. J Virus Erad. 2021;7(3):100055. DOI:10.1016/j.jve.2021.100055
  • Liu Q, Zhao L, Guo Y, et al. Antigenic evolution characteristics and immunological evaluation of H9N2 avian influenza viruses from 1994-2019 in China. Viruses. 2022;14(4):726. DOI:10.3390/v14040726
  • Grenfell BT, Pybus OG, Gog JR, et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science. 2004;303(5656):327–332. DOI:10.1126/science.1090727
  • Jin F, Dong X, Wan Z, et al. A single mutation N166D in hemagglutinin affects antigenicity and pathogenesis of H9N2 avian influenza virus. Viruses. 2019;11(8):709. DOI:10.3390/v11080709
  • Powell JD, Abente EJ, Chang J, et al. Characterization of contemporary 2010.1 H3N2 swine influenza A viruses circulating in United States pigs. Virology. 2021;553:94–101.