1,052
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Warm winters are associated to more intense West Nile virus circulation in southern Spain

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2348510 | Received 01 Dec 2023, Accepted 23 Apr 2024, Published online: 02 May 2024

References

  • Kramer LD, Styer LM, Ebel GD. A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol. 2008;53:61–81. doi:10.1146/annurev.ento.53.103106.093258
  • Rizzoli A, Bolzoni L, Chadwick EA, et al. Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasit Vectors. 2015;8:1–13. doi:10.1186/s13071-014-0608-1
  • Giesen C, Herrador Z, Fernandez-Martinez B, et al. A systematic review of environmental factors related to WNV circulation in European and Mediterranean countries. One Health. 2023;16:100478. doi:10.1016/j.onehlt.2022.100478
  • Vogels CBF, Göertz GP, Pijlman GP, et al. Vector competence of European mosquitoes for west Nile virus. Emerg Microbes Infect. 2017;6. doi:10.1038/EMI.2017.82
  • Pérez-Ramírez E, Llorente F, Jiménez-Clavero MÁ. Experimental infections of wild birds with West Nile virus. Viruses. 2014;6:752), doi:10.3390/v6020752
  • Komar N, Langevin S, Hinten S, et al. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis. 2003;9:311–322. doi:10.3201/eid0903.020628
  • Kilpatrick AM, Daszak P, Jones MJ, et al. Host heterogeneity dominates West Nile virus transmission. Proc R Soc B:Biol Sci. 2006;273:2327–2333. doi:10.1098/rspb.2006.3575
  • Figuerola J, Soriguer R, Rojo G, et al. Seroconversion in wild birds and local circulation of West Nile virus, Spain. Emerg Infect Dis. 2007;13:1915. doi:10.3201/eid1312.070343
  • Fereidouni SR, Ziegler U, Linke S, et al. West Nile virus monitoring in migrating and resident water birds in Iran: Are common coots the main reservoirs of the virus in wetlands? 2011;11:1377–1381. Available from: https://home.liebertpub.com/vbz
  • Brault AC, Savage HM, Duggal NK, et al. Heartland virus epidemiology, vector association, and disease potential. Viruses. 2018;10:498. doi:10.3390/v10090498
  • Petersen LR, Marfin AA. West Nile virus: a primer for the clinician. Ann Intern Med. 2002;137:173–179. doi:10.7326/0003-4819-137-3-200208060-00009
  • Vilibic-Cavlek T, Savic V, Petrovic T, et al. Emerging trends in the epidemiology of West Nile and Usutu virus infections in Southern Europe. Front Vet Sci. 2019;6:437. doi:10.3389/fvets.2019.00437
  • Jiménez-Clavero MA, Llorente F, Sotelo E, et al. West Nile virus serosurveillance in horses in Doñana, Spain, 2005 to 2008. Vet Rec. 2010;167:379–380. doi:10.1136/vr.c3155
  • Figuerola J, Jiménez-Clavero MA, López G, et al. Size matters: West Nile virus neutralizing antibodies in resident and migratory birds in Spain. Vet Microbiol. 2008;132:39–46. doi:10.1016/j.vetmic.2008.04.023
  • Ferraguti M, Martínez-De La Puente J, Roiz D, et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci Rep. 2016;6:1–9. doi:10.1038/srep29002
  • Höfle U, Blanco JM, Crespo E, et al. West Nile virus in the endangered Spanish imperial eagle. Vet Microbiol. 2008;129:171–178. doi:10.1016/j.vetmic.2007.11.006
  • Jiménez-Clavero MA, Sotelo E, Fernandez-Pinero J, et al. West Nile virus in golden eagles, Spain, 2007. Emerg Infect Dis. 2008;14:1489–1491. doi:10.3201/eid1409.080190
  • Vázquez A, Sánchez-Seco MP, Ruiz S, et al. Putative new lineage of West Nile Virus, Spain. Emerg Infect Dis. 2010;16:549. doi:10.3201/eid1603.091033
  • Figuerola J, Jiménez-Clavero MÁ, Ruíz-López MJ, et al. A one health view of the West Nile virus outbreak in Andalusia (Spain) in 2020. Emerg Microbes Infect. 2022;11:2570–2578. doi:10.1080/22221751.2022.2134055
  • Rodríguez-Alarcón LGSM, Fernández-Martínez B, Moros MJS, et al. Unprecedented increase of West Nile virus neuroinvasive disease, Spain, summer 2020. Eurosurveillance. 2021;26:2002010.
  • Brugueras S, Fernández-Martínez B, Martínez-de la Puente J, et al. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in Southern Europe: a systematic review. Environ Res. 2020;191:110038. doi:10.1016/j.envres.2020.110038
  • Hahn MB, Monaghan AJ, Hayden MH, et al. Meteorological conditions associated with increased incidence of West Nile virus disease in the United States, 2004–2012. Am J Trop Med Hyg. 2015;92:1013. doi:10.4269/ajtmh.14-0737
  • Baker J. Identification Guide to European Non-Passerines. Thetford, Norfolk: British Trust for Ornithology; 1992.
  • Roiz D, Ruiz S, Soriguer R, et al. Climatic effects on mosquito abundance in Mediterranean wetlands. Parasit Vectors. 2014;7:1–13. doi:10.1186/1756-3305-7-1
  • Magallanes S, Llorente F, Ruiz-López MJ, et al. Long-term serological surveillance for West Nile and Usutu virus in horses in South-West Spain. One Health. 2023;17:100578. doi:10.1016/j.onehlt.2023.100578
  • Sánchez-Gómez A, Amela C, Fernández-Carrión E, et al. Risk mapping of West Nile virus circulation in Spain, 2015. Acta Trop. 2017;169:163–169. doi:10.1016/j.actatropica.2017.02.022
  • Llorente F, García-Irazábal A, Pérez-Ramírez E, et al. Influence of flavivirus co-circulation in serological diagnostics and surveillance: A model of study using West Nile, Usutu and Bagaza viruses. Transbound Emerg Dis. 2019;66:2100–2106. doi:10.1111/tbed.13262
  • Sotelo E, Llorente F, Rebollo B, et al. Development and evaluation of a new epitope-blocking ELISA for universal detection of antibodies to West Nile virus. J Virol Methods. 2011;174:35–41. doi:10.1016/j.jviromet.2011.03.015
  • Calisher CH, Karabatsos N, Dalrymple JM, et al. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol. 1989;70:37–43. doi:10.1099/0022-1317-70-1-37
  • Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 2010;1:3–14. doi:10.1111/j.2041-210X.2009.00001.x
  • Moss RH, Edmonds JA, Hibbard KA, et al. The next generation of scenarios for climate change research and assessment. Nature. 2010;463:747–756. doi:10.1038/nature08823
  • Collins WJ, Bellouin N, Doutriaux-Boucher M, et al. Development and evaluation of an Earth-System model – HadGEM2. Geosci Model Dev. 2011;4:1051–1075. doi:10.5194/gmd-4-1051-2011
  • Beveroth TA, Ward MP, Lampman RL, et al. Changes in seroprevalence of West Nile virus across Illinois in free-ranging birds from 2001 through 2004. Am J Trop Med Hyg. 2006;74:174–179. doi:10.4269/ajtmh.2006.74.174
  • Islam A, Islam S, Hossain ME, et al. Serological evidence of West Nile virus in wild birds in Bangladesh. Vet Sci. 2020;7:1–9.
  • Martínez-de la Puente J, Ferraguti M, Ruiz S, et al. Mosquito community influences West Nile virus seroprevalence in wild birds: implications for the risk of spillover into human populations. Sci Rep. 2018;8, doi:10.1038/s41598-018-20825-z
  • Paz S, Semenza JC. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia—A review. Int J Environ Res Public Health. 2013;10:3543–3562. doi:10.3390/ijerph10083543
  • Ferraguti M, Dimas Martins A, Artzy-Randrup Y. Quantifying the invasion risk of West Nile virus: insights from a multi-vector and multi-host SEIR model. One Health. 2023;17:100638. doi:10.1016/j.onehlt.2023.100638
  • Caminade C, McIntyre KM, Jones AE. Impact of recent and future climate change on vector-borne diseases. Ann N Y Acad Sci. 2019;1436:157–173. doi:10.1111/nyas.13950
  • Bellone R, Failloux AB. The role of temperature in shaping mosquito-borne viruses transmission. Front Microbiol. 2020;11, doi:10.3389/fmicb.2020.584846
  • Shocket MS, Verwillow AB, Numazu MG, et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23°C and 26°C. Elife. 2020;9:1–67. doi:10.7554/eLife.58511
  • Kilpatrick AM, Meola MA, Moudy RM, et al. Viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog. 2008;4:e1000092. doi:10.1371/journal.ppat.1000092
  • Marini G, Manica M, Delucchi L, et al. Spring temperature shapes West Nile virus transmission in Europe. Acta Trop. 2021;215:105796. doi:10.1016/j.actatropica.2020.105796
  • Tran A, Sudre B, Paz S, et al. Environmental predictors of West Nile fever risk in Europe. Int J Health Geogr. 2014;13:1–11. doi:10.1186/1476-072X-13-1
  • Gangoso L, Aragonés D, Martínez-de la Puente J, et al. Determinants of the current and future distribution of the West Nile virus mosquito vector Culex pipiens in Spain. Environ Res. 2020;188:109837. doi:10.1016/j.envres.2020.109837
  • Almaraz P, Green AJ. Catastrophic bifurcation in the dynamics of a threatened bird community triggered by a planetary-scale environmental perturbation. Biol Conserv. 2024;291:110466. doi:10.1016/j.biocon.2024.110466
  • Ramo C, Aguilera E, Figuerola J, et al. Long-term population trends of colonial wading birds breeding in Doñana (Sw Spain) in relation to environmental and anthropogenic factors. 2013;60:305–326.
  • Santoro S, Green AJ, Figuerola J. Environmental instability as a motor for dispersal: a case study from a growing population of glossy ibis. PLoS One. 2013;8. doi:10.1371/JOURNAL.PONE.0082983
  • Figuerola J. Climate and dispersal: black-winged stilts disperse further in Dry springs. PLoS One. 2007;2:539. doi:10.1371/journal.pone.0000539