1,207
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transcriptome profiles of organ tissues from pigs experimentally infected with African swine fever virus in early phase of infection

ORCID Icon, , , , , , , , , , , , & show all
Article: 2366406 | Received 03 Mar 2024, Accepted 05 Jun 2024, Published online: 26 Jun 2024

References

  • Dixon LK, Sun H, Roberts HJ. African swine fever. Antiviral Res. 2019;165:34–41. doi:10.1016/j.antiviral.2019.02.018
  • Wang N, Zhao D, Wang J, et al. Inception of memories that guide vocal learning in the songbird. Science 2019;366:83–89. doi:10.1126/science.aaw4226
  • Zhao D, Sun E, Huang L, et al. Highly lethal genotype I and II recombinant African swine fever viruses detected in pigs. Nat Commun. 2023;14:3096. doi:10.1038/s41467-023-38868-w
  • Mai NT, Vu XD, Nguyen TT, et al. Molecular profile of African swine fever virus (ASFV) circulating in Vietnam during 2019-2020 outbreaks. Arch Virol. 2021;166:885–890. doi:10.1007/s00705-020-04936-5
  • Cho KH, Kim HJ, Jang MK, et al. Detection of African swine fever at an abattoir in South Korea, 2020. Vet Sci. 2022;9:150. doi:10.3390/vetsci9040150
  • Rock DL. Challenges for African swine fever vaccine development—“ … perhaps the end of the beginning.”. Vet Microbiol. 2017;206:52–58. doi:10.1016/j.vetmic.2016.10.003
  • Franzoni G, Graham SP, Sanna G, et al. Interaction of porcine monocyte-derived dendritic cells with African swine fever viruses of diverse virulence. Vet Microbiol. 2018;216:190–197. doi:10.1016/j.vetmic.2018.02.021
  • Dixon LK, Islam M, Nash R, et al. African swine fever virus evasion of host defences. Virus Res. 2019;266:25–33. doi:10.1016/j.virusres.2019.04.002
  • Lv L, Zhang T, Jia H, et al. Temporally integrated transcriptome analysis reveals ASFV pathology and host response dynamics. Front Immunol. 2022;13:995998. doi:10.3389/fimmu.2022.995998
  • Schäfer A, Franzoni G, Netherton CL, et al. Analyses of the impact of immunosuppressive cytokines on porcine macrophage responses and susceptibility to infection to African swine fever viruses. Pathogens 2022;11:166. doi:10.3390/pathogens11020166
  • Salguero FJ, Sánchez-Cordón PJ, Nunez A, et al. Proinflammatory cytokines induce lymphocyte apoptosis in acute African swine fever infection. J Comp Pathol. 2005;132:289–302. doi:10.1016/j.jcpa.2004.11.004
  • Fan W, Cao Y, Jiao P, et al. Synergistic effect of the responses of different tissues against African swine fever virus. Transbound Emerg Dis. 2022;69:204–212. doi:10.1111/tbed.14375
  • Li Z, Chen W, Li X, et al. Transcriptome profiling in swine macrophages infected with African swine fever virus at single-cell resolution. Proc Natl Acad Sci. U.S.A. 2022;119:e2201288119. doi:10.1073/pnas.2201288119
  • Yang B, Shen C, Zhang D, et al. Mechanism of interaction between virus and host is inferred from the changes of gene expression in macrophages infected with African swine fever virus CN/GS/2018 strain. Virol J. 2021;18:170. doi:10.1186/s12985-021-01637-6
  • Zhu JJ, Ramanathan P, Bishop EA, et al. Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages. PLoS One 2019;14:e0221200. doi:10.1371/journal.pone.0221200
  • Cackett G, Portugal R, Matelska D, et al. African swine fever virus and host response: transcriptome profiling of the Georgia 2007/1 strain and porcine macrophages. J Virol. 2022;96:e0193921.
  • Machuka EM, Juma J, Muigai AW, et al. Transcriptome profile of spleen tissues from locally-adapted Kenyan pigs (Sus scrofa) experimentally infected with three varying doses of a highly virulent African swine fever virus genotype IX isolate: Ken12/busia. 1 (ken-1033). BMC Genomics 2022;23:522.
  • Lee HS, Bui VN, Dao DT, et al. Pathogenicity of an African swine fever virus strain isolated in Vietnam and alternative diagnostic specimens for early detection of viral infection. Porcine Health Manag. 2021;7:1–11. doi:10.1186/s40813-020-00179-7
  • Sheet S, Oh YI, Arora D, et al. Insight into the potential candidate genes and signaling pathways involved in lymphoma disease in dogs using a comprehensive whole blood transcriptome analysis. Gene 2022;838:146735. doi:10.1016/j.gene.2022.146735
  • Urbano AC, Ferreira F. African swine fever control and prevention: an update on vaccine development. Emerg Microbes Infect. 2022;11:2021–2033. doi:10.1080/22221751.2022.2108342
  • Chen W, Zhao D, He X, et al. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci China Life Sci. 2020;63:623–634. doi:10.1007/s11427-020-1657-9
  • Borca MV, Ramirez-Medina E, Silva E, et al. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. J Virol. 2020;94:e02017–e02019.
  • Liu Y, Shen Z, Xie Z, et al. African swine fever virus I73R is a critical virulence-related gene: A potential target for attenuation. Proc Natl Acad Sci. USA. 2023;120: e2210808120. doi:10.1073/pnas.2210808120
  • Gao P, Zhou L, Wu J, et al. Riding apoptotic bodies for cell–cell transmission by African swine fever virus. Proc Natl Acad Sci USA. 2023;120:e2309506120. doi:10.1073/pnas.2309506120
  • Liu Y, Zhang X, Qi W, et al. Prevention and control strategies of African swine fever and progress on pig farm repopulation in China. Viruses. 2021;13:2552. doi:10.3390/v13122552
  • Oh SI, Bui NA, Bui VN, et al. Pathobiological analysis of African swine fever virus contact-exposed pigs and estimation of the basic reproduction number of the virus in Vietnam. Porcine Health Manag. 2023;9:30. doi:10.1186/s40813-023-00330-0
  • Sánchez-Torres C, Gómez-Puertas P, Gomez-del-Moral M, et al. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch Virol. 2003;148:2307–2323. doi:10.1007/s00705-003-0188-4
  • Wang S, Song R, Wang Z, et al. S100a8/A9 in inflammation. Front. Immunol. 2018;9:1298. doi:10.3389/fimmu.2018.01298
  • Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol. 2003;3:791–800. doi:10.1038/nri1200
  • Zhang H, Coblentz C, Watanabe-Smith K, et al. Gain-of-function mutations in granulocyte colony–stimulating factor receptor (CSF3R) reveal distinct mechanisms of CSF3R activation. J Biol Chem. 2018;293:7387–7396. doi:10.1074/jbc.RA118.002417
  • Ma L, Li Q, Cai S, et al. The role of NK cells in fighting the virus infection and sepsis. Int J Med Sci. 2021;18:3236–3248. doi:10.7150/ijms.59898
  • Villani AC, Satija R, Reynolds G, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017;356:eaah4573. doi:10.1126/science.aah4573
  • Hamidi T, Cano CE, Grasso D, et al. NUPR1 works against the metabolic stress-induced autophagy-associated cell death in pancreatic cancer cells. Autophagy 2013;9:95–97. doi:10.4161/auto.22258
  • Wang S, Zhang J, Zhang Y, et al. Cytokine storm in domestic pigs induced by infection of virulent African swine fever virus. Front Vet Sci. 2021;7:601641. doi:10.3389/fvets.2020.601641
  • Peperzak V, Veraar EA, Xiao Y, et al. Cd8+ T cells produce the chemokine CXCL10 in response to CD27/CD70 costimulation To promote generation of the CD8+ effector T cell pool. J Immunol. 2013;191:3025–3036. doi:10.4049/jimmunol.1202222
  • Asgari S, Schlapbach LJ, Anchisi S, et al. Severe viral respiratory infections in children with IFIH1 loss-of-function mutations. Proc Natl Acad Sci USA. 2017;114:8342–8347. doi:10.1073/pnas.1704259114
  • Kholod N, Koltsov A, Koltsova G. Analysis of gene expression in monocytes of immunized pigs after infection with homologous or heterologous African swine fever virus. Front Vet Sci. 2022;9:936978. doi:10.3389/fvets.2022.936978
  • Franzoni G, Pedrera M, Sánchez-Cordón PJ. African swine fever virus infection and cytokine response in vivo: an update. Viruses 2023;15:233. doi:10.3390/v15010233
  • Bosch-Camós L, Alonso U, Esteve-Codina A, et al. Cross-protection against African swine fever virus upon intranasal vaccination is associated with an adaptive-innate immune crosstalk. PLoS Pathog. 2022;18:e1010931. doi:10.1371/journal.ppat.1010931
  • Sánchez-Cordón PJ, Jabbar T, Berrezaie M, et al. Evaluation of protection induced by immunisation of domestic pigs with deletion mutant African swine fever virus BeninΔMGF by different doses and routes. Vaccine 2018;36:707–715. doi:10.1016/j.vaccine.2017.12.030
  • Faas M, Ipseiz N, Ackermann J, et al. IL-33-induced metabolic reprogramming controls the differentiation of alternatively activated macrophages and the resolution of inflammation. Immunity 2021;54:2531–2546. doi:10.1016/j.immuni.2021.09.010
  • Radulovic E, Mehinagic K, Wüthrich T, et al. The baseline immunological and hygienic status of pigs impact disease severity of African swine fever. PLoS Pathog. 2022;18:e1010522. doi:10.1371/journal.ppat.1010522
  • Liao W, Lin J-X, Leonard WJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol. 2011;23:598–604. doi:10.1016/j.coi.2011.08.003
  • Silva-Filho J, Caruso-Neves C, Pinheiro A. IL-4: an important cytokine in determining the fate of T cells. Biophys Rev. 2014;6:111–118. doi:10.1007/s12551-013-0133-z
  • González-Serna D, Ortiz-Fernández L, Vargas S, et al. Association of a rare variant of the TNFSF13B gene with susceptibility to rheumatoid arthritis and systemic lupus erythematosus. Sci Rep. 2018;8:8195. doi:10.1038/s41598-018-26573-4
  • Matesanz-Isabel J, Sintes J, Llinàs L, et al. New B-cell CD molecules. Immunol Lett. 2011;134:104–112. doi:10.1016/j.imlet.2010.09.019
  • Zheng Y, Li S, Li SH, et al. Transcriptome profiling in swine macrophages infected with African Swine Fever Virus (ASFV) uncovers the complex and close relationship with host. Pathogens 2022;11:1411. doi:10.3390/pathogens11121411
  • Sánchez EG, Quintas A, Pérez-Núñez D, et al. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog. 2012;8:e1002754.
  • Diehl N, Schaal H., Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses 2013;5:3192–3212.
  • De Marchi T, Timmermans AM, Smid M, et al. Annexin-A1 and caldesmon are associated with resistance to tamoxifen in estrogen receptor positive recurrent breast cancer. Oncotarget. 2016;7:3098–3110. doi:10.18632/oncotarget.6521
  • Chen H, Wang Z, Gao X, et al. ASFV pD345L protein negatively regulates NF-κB signalling by inhibiting IKK kinase activity. Vet Res. 2022;53:32. doi:10.1186/s13567-022-01050-z
  • Gao Q, Yang Y, Feng Y, et al. Effects of the NF-κB signaling pathway inhibitor BAY11-7082 in the replication of ASFV. Viruses 2022;14:297. doi:10.3390/v14020297
  • Gao Q, Yang Y, Feng Y, et al. Aloe-emodin inhibits African swine fever virus replication by promoting apoptosis via regulating NF-κB signaling pathway. Virol J. 2023;20:158. doi:10.1186/s12985-023-02126-8
  • Zhu Z, Mao R, Liu B, et al. Single-cell profiling of African swine fever virus disease in the pig spleen reveals viral and host dynamics. Proc Natl Acad Sci USA. 2024;121:e2312150121. doi:10.1073/pnas.2312150121
  • Kobayashi M, Oshima S, Maeyashiki C, et al. ESCRT-0 dysfunction compromises autophagic degradation of protein aggregates and facilitates ER stress-mediated neurodegeneration via apoptotic and necroptotic pathways. Sci Rep. 2016;6:36780. doi:10.1038/srep24997
  • Wang Q, Li Q, Liu T, et al. Host interaction analysis of PA-N155 and PA-N182 in chicken cells reveals an essential role of UBA52 for replication of H5N1 avian influenza virus. Front Microbiol. 2018;9:936. doi:10.3389/fmicb.2018.00936
  • Barrado-Gil L, Del Puerto A, Galindo I, et al. African swine fever virus ubiquitin-conjugating enzyme is an immunomodulator targeting NF-κB activation. Viruses 2012;13:1160.
  • Freitas FB, Frouco G, Martins C, et al. African swine fever virus encodes for an E2-ubiquitin conjugating enzyme that is mono- and di-ubiquitinated and required for viral replication cycle. Sci Rep. 2018;8:3471. doi:10.1038/s41598-018-21872-2