31
Views
5
CrossRef citations to date
0
Altmetric
Review

Recent advances in silica-based biosensors: a review

, , , &
Pages 257-269 | Received 27 Aug 2015, Accepted 27 Aug 2015, Published online: 07 Oct 2015

References

  • G. Konvalina, H. Haick. Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc. Chem. Res, 2014, 47, 66–76.
  • M. Govindhan, B. Adhikari, A. C. Chen. Nanomaterials-based electrochemical detection of chemical contaminants. RSC. Adv, 2014, 4, 63741–63760.
  • J. Li, Y. Yu, J. Qian, Y. Wang, J. Zhang, J. Zhi. A novel integrated biosensor based on co-immobilizing the mediator and microorganism for water biotoxicity assay. Analyst, 2014, 139, 2806–2812.
  • L. Su, W. Jia, C. Hou, Y. Lei. Microbial biosensors: a review. Biosens. Bioelectron, 2011, 26, 1788–1799.
  • S. Cao, J. Chen, X. Jin, W. Wu, Z. Zhao. (Eds. S. Li, J. Singh, H. Li, I. A. Banerjee), Biosensor Nanomaterials. Wiley-VCH Publisher, 2011, Enzyme-based biosensor: Synthesis and Applications, Chapter-5, 95–115.
  • L. Feuz, M. P. Jonsson, F. Hook. Material-selective surface chemistry for nanoplasmonic sensors: optimizing sensitivity and controlling binding to local hot spots. Nano. Lett, 2012, 12, 873–879.
  • X. Lu, X. Wang, J. Jin, Q. Zhang, J. Chen. Electrochemical biosensing platform based on amino acid ionic liquid functionalized graphene for ultrasensitive biosensing applications. Biosens. Bioelectron, 2014, 62, 134–139.
  • F. Qu, Y. Zhang, A. Rasooly, M. Yang. Electrochemical biosensing platform using hydrogel prepared from ferrocene modified amino acid as highly efficient immobilization matrix. Anal. Chem, 2014, 86, 973–976.
  • S. Cao, L. Fang, Z. Zhao, Y. Ge, S. Piletsky, A. P. F. Turner. Hierachically structured hollow silica spheres for high efficiency immobilization of enzymes. Adv. Funct. Mater, 2013, 23, 2162–2167.
  • W. Suginta, P. Khunkaewla, A. Schulte. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem. Rev, 2013, 113, 5458–5479.
  • W. Putzbach, N. J. Ronkainen. Immobilization techniques in the fabrication of nanomaterials-based electrochemical biosensors: a review. Sensors, 2013, 13, 4811–4840.
  • Y. Yin, M. M. M. Bilek, K. Fisher, C. Guo, D. R. Mckenzie. An integrated solution for rapid biosensing with robust linker free covalent binding surfaces. Biosens. Bioelectron, 2013, 42, 447–452.
  • A. H. Loo, A. Bonanni, M. Pumera. Biorecognition on graphene: physical, covalent, and affinity immobilization methods exhibiting dramatic differences. Chem. Asian J, 2013, 8, 198–203.
  • T. Shimomura, T. Itoh, T. Sumiya, F. Mizukami, M. Ono. Amperometric biosensor based on enzymes immobilized in hybrid mesoporous membranes for the determination of acetylcholine. Enzyme Microb. Technol, 2009, 45, 443–448.
  • S. Jiang, K. Y. Win, S. Liu, C. P. Teng, Y. Zheng, M. Y. Han. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale, 2013, 5, 3127–3148.
  • L. Yang, X. Zhang, M. Ye, J. Jiang, R. Yang, T. Fu, Y. Chen, K. Wang, C. Liu, W. Tan. Aptamer-conjugated nanomaterials and their applications. Adv. Drug. Deliver. Rev, 2011, 63, 1361–1370.
  • Y. Yang, A. M. Asiri, D. Du, Y. Lin. Acetylcholinesterase biosensor based on a gold nanoparticle–polypyrrole–reduced grapheme oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst, 2014, 139, 3055–3060.
  • R. Veneziano, G. Derrien, S. Tan, A. Brisson, J. Devoisselle, J. Chopineau, C. Charnay. One step synthesis of gold-loaded radial mesoporous silica nanospheres and supported lipid bilayer functionalization: towards bio-multifunctional sensors. Small, 2012, 8, 3674–3682.
  • J. Li, X. Qin, Z. Yang, H. Qi, Q. Xu, G. Diao. A novel mesoporous silica nanosphere matrix for the immobilization of proteins and their applications as electrochemical biosensor. Talanta, 2013, 104, 116–121.
  • V. Biju. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev, 2014, 43, 744–764.
  • F. Q. Tang, L. L. Li, D. Chen. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater, 2012, 24, 1504–1534.
  • V. Patel, D. Leach, M. Hornberger, K. Williams, J. Shih, M. Ma, J. Laycock. Automating bioanalytical sample analysis through enhanced system integration. Bioanalysis, 2013, 5, 1649–1659.
  • W. Zhao, Y. Fang, Q. Zhu, K. Wang, M. Liu, X. Huang, J. Shen. A novel glucose biosensor based on phosphonic acid-functionalized silica nanoparticles for sensitive detection of glucose in real samples. Electrochim. Acta, 2013, 89, 278–283.
  • M. Liu, S. Chen, X. Zhao, Y. Ye, J. Li, Q. Zhu, B. Zhao, W. Zhao, X. Huang, J. Shen. Biocompatible phosphonic acid-functionalized silica nanoparticles for sensitive detection of hypoxanthine in real samples. Talanta, 2013, 117, 536–542.
  • A. M. Rossi, L. Wang, V. Reipa, T. E. Murphy. Porous silicon biosensor for detection of viruses. Biosens. Bioelectron, 2007, 23, 741–745.
  • S. G. Burton, D. A. Cowan, J. M. Woodley. The search for the ideal biocatalyst. Nat. Biotechnol, 2002, 20, 37–45.
  • D. Samanta, A. Sarkar. Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications. Chem. Soc. Rev, 2011, 40, 2567–2592.
  • L. A. DeLouise, B. L. Miller. Enzyme immobilization in porous silicon : quantitative analysis of the kinetic parameters for glutathione-S-transferases. Anal. Chem, 2005, 77, 1950–1956.
  • Y. Bai, H. Yang, W. Yang, Y. Li, C. Sun. Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sensor. Actuat. B Chem, 2007, 124, 179–186.
  • J. Yu, L. Ge, P. Dai, S. Ge, S. Liu. A novel enzyme biosensor for glucose based on rhodanine derivative chemiluminescence system and mesoporous hollow silica microspheres receptor. Biosens. Bioelectron, 2010, 25, 2065–2070.
  • M. Hartmann, X. Kostrov. Immobilization of enzymes on porous silicas-benefits and challenges. Chem. Soc. Rev, 2013, 42, 6277–6289.
  • C. Bernal, A. Illanes, L. Wilson. Heterofunctional hydrophilic-hydrophobic porous silica as support for multipoint covalent immobilization of lipases: application to lactulose palmitate synthesis. Langmuir, 2014, 30, 3557–3566.
  • V. Vamvakaki, N. A. Chaniotakis. Immobilization of enzymes into nanocavities for the improvement of biosensor stability. Biosens. Bioelectron, 2007, 22, 2650–2655.
  • S. H. Wu, C. Y. Mou, H. P. Lin. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev, 2013, 42, 3862–3875.
  • M. Hatzimarinaki, V. Vamvakaki, N. Chaniotakis. Spectro-electrochemical studies of acetylcholinesterase in carbon nanofiber-bioinspired silica nanocomposites for biosensor development. J. Mater. Chem, 2009, 19, 428–433.
  • J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nat. Mater, 2008, 7, 442–453.
  • R. Bardhan, S. Lal, A. Joshi, N. J. Halas. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc. Chem. Res, 2011, 44, 936–946.
  • A. Vanderkooy, M. A. Brook. Polyvinylpyrrolidone molecular weight controls silica shell thickness on Au nanoparticles with diglycerylsilane as precursor. ACS Appl. Mater. Interfaces, 2012, 4, 3980–3986.
  • L. M. Liz-Marzán, A. P. Philipse. Synthesis and optical properties of gold-labeled silica particles. J. Colloid Interface Sci, 1995, 176, 459–466.
  • A. Guerrero-Mart´ınez, J. P´erez-Juste, L. M. Liz-Marz´an. Recent progress on silica coating of nanoparticles and related nanomaterials. Adv. Mater, 2010, 22, 1182–1195.
  • C. Lin, Y. Yang, P. Liao, D. Chen, H. Lin, H. Chang. A filter-like AuNPs@MSSERS substrate for staphylococcus aureus detection. Biosens. Bioelectron, 2014, 53, 519–527.
  • P. Raghu, T. M. Reddy, P. Gopal, K. Reddaiah, N. Y. Sreedhar. A novel horseradish peroxidase biosensor towards the detection of dopamine: a voltammetric study. Enzyme. Microb. Technol, 2014, 57, 8–15.
  • B. B. Prasad, D. Jauhari, M. P. Tiwari. A dual-template imprinted polymer-modified carbon ceramic electrode for ultra-trace simultaneous analysis of ascorbic acid and dopamine. Biosens. Bioelectron, 2013, 50, 19–27.
  • A. Venkatanarayanan, K. Crowley, E. Lestini, T. E. Keyes, J. F. Rusling, R. J. Forster. High sensitivity carbon nanotube based electrochemiluminescence sensor. Biosens. Bioelectron, 2012, 31, 233–239.
  • U. Yogeswaran, S. M. Chen. Separation and concentration effect of f-MWCNTs on electrocatalytic responses of ascorbic acid, dopamine and uric acid at f-MWCNTs incorporated with poly (neutral red) composite films. Electrochim. Acta, 2006, 52, 5985–5996.
  • Z. Yu, T. E. McKnight, M. N. Ericson, A. V. Melechko, M. L. Simpson, B. Morrison. Vertically aligned carbon nanofiber arrays record electrophysiological signals from hippocampal slices. Nano. Lett, 2007, 7, 2188–2195.
  • H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, J. Lee. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc, 2005, 127, 11906–11907.
  • J. Zhang, Y. Chai, R. Yuan, Y. Yuan, L. Bai, S. Xie. A highly sensitive electrochemical aptasensor for thrombin detection using functionalized mesoporous silica@multiwalled carbon nanotubes as signal tags and DNAzyme signal amplification. Analyst, 2013, 138, 6938–6945.
  • K. L. Ding, B. J. Hu, Y. Xie, G. An, R. Tao, H. Y. Zhang, Z. M. Liu. A simple route to coat mesoporous SiO2 layer on carbon nanotubes. J. Mater. Chem, 2009, 19, 3725–3731.
  • H. Wang, Z. Wang, M. Ye, S. Zong, M. Li, P. Chen, Y. Cui. Optically encoded nanoprobes using single walled carbon nanotube as the building scaffold for magnetic field guided cell imaging. Talanta, 2014, 119, 144–150.
  • B. Wu, C. Hu, X. Hu, H. Cao, C. Huang, H. B. Shen, N. Jia. Sensitive ECL immunosensor for detection of retinol-binding protein based on double-assisted signal amplification strategy of multiwalled carbon nanotubes and Ru(bpy)3 2+ doped mesoporous silica nanospheres. Biosens. Bioelectron, 2013, 50, 300–304.
  • J. D. Wulfkuhle, L. A. Liotta, E. F. Petricoin. Early detection: proteomic applications for the early detection of cancer. Nat. Rev. Cancer, 2003, 3, 267–275.
  • L. Hood, J. R. Heath, M. E. Phelps, B. Lin. Systems biology and new technologies enable predictive and preventative medicine. Science, 2004, 306, 640–643.
  • M. M. Cheng, G. Cuda, Y. L. Bunimovich, M. Gaspari, J. R. Heath, H. D. Hill, C. A. Mirkin, A. J. Nijdam, R. Terracciano, T. Thundat, M. Ferrari. Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Biol, 2006, 10, 11–19.
  • X. Li, W. Li, S. Zhang. Chemiluminescence DNA biosensor based on dual-amplification of thrombin and thiocyanuric acid-gold nanoparticle network. Analyst, 2010, 135, 332–336.
  • A. Wang, Y. Li, Z. Li, J. Feng, Y. Sun, J. Chen. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4@silica@Au magnetic nanoparticles. Mat. Sci. Eng. C, 2012, 32, 1640–1647.
  • C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao. Recent advances in electrochemical glucose biosensors: a review. RSC. Adv, 2013, 3, 4473–4491.
  • I. Al-Ogaidi, H. Gou, A. K. A. Al-kazaz, Z. P. Aguilar, A. K. Melconian, P. Zheng, N. Wu. A gold@silica core–shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection. Anal. Chim. Acta, 2014, 811, 76–80.
  • Y. M. Ju B., Yu, T. J. Koob, Y. Moussy, F. Moussy. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. I. In vitro/in vivo stability of the scaffold and in vitro sensitivity of the glucose sensor with scaffold. J. Biomed. Mater. Res, 2008, 87A, 136–146.
  • C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S. Y. Lin. A mesoporous silica nanosphere-based carriers system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc, 2003, 125, 4451–4459.
  • Y. M. Ju, B. Yu, L. West, Y. Moussy, F. Moussy. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. II. Long-term in vitro/in vivo sensitivity characteristics of sensors with NDGA- or GA-crosslinked collagen scaffolds. J. Biomed. Mater. Res, 2010, 92A, 650–658.
  • C. Sun, X. Chen, Q. Han, M. Zhou, C. Mao, Q. Zhu, J. Shen. Fabrication of glucose biosensor for whole blood based on Au/hyperbranched polyester nanoparticles multilayers by antibiofouling and self-assembly technique. Anal. Chim. Acta, 2013, 776, 17–23.
  • N. J. Forrow, S. W. Bayliff. A commercial whole blood glucose biosensor with a low sensitivity to hematocrit based on an impregnated porous carbon electrode. Biosens. Bioelectron, 2005, 21, 581–587.
  • J. Chen, W. Huang, J. Han, S. Cao. The characterization and application of biological remediation technology for organic contaminants. Int. J. Environ. Res, 2011, 5, 515–530.
  • E. Ceretti, C. Zani, I. Zerbini, G. Viola, M. Moretti, M. Villarini, L. Dominici, S. Monarca, D. Feretti. Monitoring of volatile and non-volatile urban air genotoxins using bacteria, human cells and plants. Chemosphere, 2015, 120, 221–229.
  • A. Ullmann, N. Brauner, S. Vazana, Z. Katz, R. Goikhman, B. Seemann, H. Marom, M. Gozin. New biodegradable organic soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media. J. Hazard. Mater, 2013, 260, 676–688.
  • T. Shimomura, T. Itoh, T. Sumiya, F. Mizukami, M. Ono. Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sensor. Actuat B Chem, 2008, 135, 268–275.
  • Y. Masuda, S. Kugimiya, K. Murai, A. Hayashi, K. Kato. Enhancement of activity and stability of the formaldehyde dehydrogenase by immobilizing onto phenyl-functionalized mesoporous silica. Colloids. Surf B, 2013, 101, 26–33.
  • Y. Masuda, S. Kugimiya, Y. Kawachi, K. Kato. Interparticle mesoporous silica as an effective support for enzyme immobilization. RSC. Adv, 2014, 4, 3573–3580.
  • J. Chermiti, M. B. Ali, C. Dridi, M. Gonchar, N. Jaffrezic-Renault, Y. Korpan. Site-binding model as a basis for numerical evaluation of analytical parameters of capacitance-biosensors for formaldehyde and methylamine detection. Sensor. Actuat B Chem, 2013, 188, 824–830.
  • Z. Dai, H. Bai, M. Hong, Y. Zhu, J. Bao, J. Shen. A novel nitrite biosensor based on the direct electron transfer of hemoglobin immobilized on CdS hollow nanospheres. Biosens. Bioelectron, 2008, 23, 1869–1873.
  • V. Dhull, A. Gahlaut, A. Gothwal, J. S. Duhan, V. Hooda, R. K. Salar, (eds.), Biotechnology: Prospects and Applications, 2013, Chapter-16, 217.
  • O. N. Ponamoreva, O. A. Kamanina, V. A. Alferov, A. V. Machulin, T. V. Rogova, V. A. Arlyapov, S. V. Alferov, N. E. Suzina, E. P. Ivanova. Yeast-based self-organized hybrid bio-silica sol-gels for the design of biosensors. Biosens. Bioelectron, 2015, 67, 321–326
  • D. Wang, H. Sun, A. Chen, S. Jang, A. K. Y. Jen. Chemiresistive response of silicon nanowires to trace vapor nitro explosives. Nanoscale, 2012, 4, 2628–2632.
  • M. A. Krepker, E. Segal. Dual-functionalized porous Si/hydrogel hybrid for label-free biosensing of organophosphorus compounds. Anal. Chem, 2013, 85, 7353–7360.
  • P. Raghu, T. M. Reddy, K. Reddaiah, B. E. K. Swamy, M. Sreedhar. Acetylcholinesterase based biosensor for monitoring of malathion and acephate in food samples: a voltammetric study. Food. Chem, 2014, 142, 188–196.
  • S. Jun, J. Lee, B. C. Kim, J. E. Lee, J. Joo, H. Park, J. H. Lee, S. Lee, D. Lee, S. Kim, Y. Koo, C. H. Shin, S. W. Kim, T. Hyeon, J. Kim. Highly efficient enzyme immobilization and stabilization within meso-structured onion-like silica for biodiesel production. Chem. Mater, 2012, 24, 924–929.
  • T. Vong, S. Schoffelen, S. F. M. Van Dongen, T. A. van Beek, H. Zuihof, J. C. M. van Hest. A DNA-based strategy for dynamic positional enzyme immobilization. Chem. Sci, 2011, 2, 1278–1285.
  • T. Jesionowski, J. Zdarta, B. Krajewska. Enzyme immobilization by adsorption: a review. Adsorption, 2014, 20, 801–821
  • S. Liu, J. Liu, X. Han, Y. Cui, W. Wang. Electrochemical DNA biosensor fabrication with hollow gold nanospheres modified electrode and its enhancement in DNA immobilization and hybridization. Biosens. Bioelectron, 2010, 25, 1640–1645.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.