52
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Electrochemically Reduced Graphene Oxide Modified Carbon Ceramic Electrode for the Determination of Pyridoxine

, &
Pages 73-85 | Received 05 Feb 2014, Accepted 24 Feb 2014, Published online: 09 Jun 2014

References

  • Martell, A.E. (1989). Vitamin B6-catalyzed reactions of alpha-amino and alpha-keto acids: model systems. Acc. Chem. Res., 22(4): 115–124. doi: 10.1021/ar00160a001
  • Natori, Y. and Oka, T. (1997). Vitamin B6 modulation of gene expression. Nutr. Res., 17(7): 1199–1207. doi: 10.1016/S0271-5317(97)00089-4
  • Gorzalka, B.B. and Moe, I.V. (1994). The effect of vitamin B6 on sexual behavior in the rat, possibly through serotonergic mechaisms. Nutr. Res., 14(2): 279–285. doi: 10.1016/S0271-5317(05)80386-0
  • Morelli, B. (1996). High-resolution/higher-order derivative spectrophotometry for determination of ternary mixtures of B-complex vitamins in pharmaceuticals. Fresenius’ J. Anal. Chem., 354(1): 97–102. doi: 10.1007/s002169600016
  • Jin, W. and Zhang, J. (2000). Monitoring pyridoxine by capillary zone electrophoresis with electrochemical detection. Electroanalysis, 12(6): 465–467. doi: 10.1002/(SICI)1521-4109(20000401)12:6<465::AID-ELAN465>3.0.CO;2-R
  • Zempleni, J. and Kubler, W. (1994). The utilization of intravenously infused pyridoxine in humans. Clin. Chim. Acta, 229(1): 27–36. doi: 10.1016/0009-8981(94)90226-7
  • Boonkerd, S., Detaevernier, M.R. and Michotte, Y. (1994). Use of capillary electrophoresis for the determination of vitamins of the B group in pharmaceutical preparations. J. Chromatogr. A, 670(1): 209–214. doi: 10.1016/0021-9673(94)80296-3
  • Martinez, R.C., Dominguez, F.B., Gracia, I.M.S., Mendez, J.H., Orellana, R.C. and Guzman, R.S. (1996). Electrochemical response of a polypyrrole-dodecylsulphate electrode with multi-charged cations and vitamins B1 and B6. Application as a microsensor in flow-injection analysis. Anal. Chim. Acta, 336(1–3): 47–56. doi: 10.1016/S0003-2670(96)00387-X
  • Hu, Q., Zhou, T., Zhang, L., Li, H. and Fang, Y. (2001). Separation and determination of three water-soluble vitamins in pharmaceutical preparations and food by micellar electrokinetic chromatography with amperometric electrochemical detection. Anal. Chim. Acta, 437(1): 123–129. doi: 10.1016/S0003-2670(01)00978-3
  • Barrales, P.O., Vidal, A.D., Cordova, M.L.F.d. and Diaz, A.M. (2001). Simultaneous determination of thiamine and pyridoxine in pharmaceuticals by using a single flow-through biparameter sensor. J. Pharm. Biomed Anal., 25(3): 619–630. doi: 10.1016/S0731-7085(00)00590-2
  • Marcos, F.S., Teixeira, G.M., Dockal, E.R. and Cavalheiro, E.T.G. (2004). Voltammetric determination of pyridoxine (Vitamin B6) at a carbon paste electrode modified with vanadyl(IV)-Salen complex. Anal. Chim. Acta, 508(1): 79–85. doi: 10.1016/j.aca.2004.03.021
  • Qu, W., Wu, K. and Hu, S. (2004). Voltammetric determination of pyridoxine (Vitamin B6) by use of a chemically-modified glassy carbon electrod. J. Pharm. Biomed. Anal., 36(3): 631–635. doi: 10.1016/j.jpba.2004.07.016
  • Wu, J., Lei, C., Yang, H., Wu, X., Shen, G. and Yu, R. (2005). Ruthenium tris(2,22 )bipyridyl-modified oxidized boron-doped diamond electrode for the determination of Vitamin B6 in the presence of Vitamins B1 and B2. Sens, Actuat, B., 107(2): 509–515. doi: 10.1016/j.snb.2004.11.009
  • Razmi, H. and Mohammad-Rezaei, R. (2010). Flow injection amperometric determination of pyridoxine at a Prussian blue nanoparticle-modified carbon ceramic electrode. Electrochim Acta, 55(5): 1814–1819. doi: 10.1016/j.electacta.2009.10.072
  • Tan, L., Xie, Q. and Yao, S. (2004). Electrochemical and spectroelectrochemical studies on pyridoxine hydrochloride using a poly(methylene blue) modified electrode. Electroanalysis, 16(19): 1592–1597. doi: 10.1002/elan.200302993
  • Geim, A.K. and Novoselov, K.S. (2007). The rise of grapheme. Nat. Mater. 6(3): 183–191. doi: 10.1038/nmat1849
  • Li, D. and Kaner, R.B. (2008). Graphene-based materials. Science, 320(5880): 1170–1171. doi: 10.1126/science.1158180
  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696): 666–669. doi: 10.1126/science.1102896
  • Service, R.F. (2008). Graphene recipe yields carbon cornucopia. Science, 322(5909): 1785. doi: 10.1126/science.322.5909.1785
  • Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887): 385–388. doi: 10.1126/science.1157996
  • Li, D., Mueller, M.B., Gilje, S., Kaner, R.B. and Wallace, G.G. (2008). Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 3(2): 101–105. doi: 10.1038/nnano.2007.451
  • Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A. and Haddon, R.C. (2006). Solution Properties of Graphite and Graphene. J. Am. Chem. Soc., 128(24): 7720–7721. doi: 10.1021/ja060680r
  • Ramakrishna Matte, H.S.S., Subrahmanyam, K.S. and Rao, C.N.R. (2009). Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J. Phys. Chem. C, 113(23): 9982–9985. doi: 10.1021/jp903397u
  • Rochefort, A. and Wuest, J.D. (2009). Interaction of Substituted Aromatic Compounds with Graphene. Langmuir, 25(1): 210–215. doi: 10.1021/la802284j
  • Pumera, M., Ambrosi, A., Chng, E.L.K. and Poh, H.L. (2010). Graphene for electrochemical sensing and biosensing. Trends Anal. Chem., 29(9): 954–965. doi: 10.1016/j.trac.2010.05.011
  • Wang, Z., Zhou, X., Zhang, J., Boey, F., and Zhang, H. (2009). Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. J. Phys. Chem. C., 113(32): 14071–14075. doi: 10.1021/jp906348x
  • Qi, B., He, L., Bo, X., Yang, H. and Guo, L. (2011). Electrochemical preparation of free standing few-layer graphene through oxidation–reduction cycling. Chem. Eng. J., 171(1): 340–344. doi: 10.1016/j.cej.2011.03.078
  • Zhang, L., Zhang, X., Li, X., Peng, Y., Shen, H. and Zhang, Y. (2013). Determination of sudan i using electrochemically reduced graphene oxide. Anal. Lett., 46(6): 923–935 doi: 10.1080/00032719.2012.747096
  • Wang, J.F., Yang, S.L., Guo, D.Y., Yu, P., Li, D., Ye, J.S. and Mao, L.Q. (2009). Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochem. Commun., 11(10): 1892–1895. doi: 10.1016/j.elecom.2009.08.019
  • Tsionsky, M., Gun, G., Glezer, V. and Lev, O. (1994). Sol-Gel-Derived Ceramic-Carbon Composite Electrodes: Introduction and Scope of Applications. Anal. Chem., 66(10): 1747–1753. doi: 10.1021/ac00082a024
  • Lev, O., Wu, Z., Bharathi, S., Glezer, V., Modestov, A., Gun, J., Rabinovich, L. and Sampath, S. (1997). Sol-Gel materials in electrochemistry. Chem. Mater., 9(11): 2354–2375. doi: 10.1021/cm970367b
  • William, S., Hummers, J.R. and Richard, E.O. (1958). Preparation of graphitic oxide. J. Am. Chem. Soc., 80(6): 1339. doi: 10.1021/ja01539a017
  • Chen, L., Tang, Y., Wang, K., Liu, C. and Luo, S. (2011). Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem. Commun., 13(2): 133–137. doi: 10.1016/j.elecom.2010.11.033
  • Guo, H.L., Wang, X.F., Qian, Q.Y., Wang, F.B. and Xia, X.H. (2009). A Green Approach to the Synthesis of Graphene Nanosheets, ACS Nano, 3(9): 2653–2659. doi: 10.1021/nn900227d
  • Shao, Y.Y., Wang, J., Engelhard, M., Wang, C.M. and Lin, Y.M. (2010). Facile and controllable electrochemical reduction of graphene oxide and its applications, J. Mater. Chem., 20(4): 743–748. doi: 10.1039/b917975e
  • Zhou, M., Wang, Y.L., Zhai, Y.M., Zhai, J.F., Ren, W., Wang, F. and Dong, S.J. (2009). Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films, Chem. Eur. J., 15(25): 6116–6120. doi: 10.1002/chem.200900596
  • Pumera, M. (2010). Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev., 39(11): 4146–4157. doi: 10.1039/c002690p
  • Razmi, H. and Mohammad-Rezaei, R. (2010). Flow injection amperometric determination of pyridoxine at a Prussian blue nanoparticle-modified carbon ceramic electrode. Electrochim Acta, 55(5): 1814–1819. doi: 10.1016/j.electacta.2009.10.072
  • Habibi, B., Phezhhan, H. and Pournaghi-Azar, M.H. (2010). voltammetric determination of vitamin B6 (pyridoxine) using multi wall carbon nanotube modified carbon-ceramic electrode. J. Iran. Chem. Soc., 7(1): 103–112. doi: 10.1007/BF03246189
  • Liu, S.Q., Sun, W.H., Li, L.C., Li, H. and Wang, X.L. (2012). Electrocatalytic oxidation and voltammetric determination of vitamin b6 by a ssdna-modified electrode. Int. J. Electrochem. Sci., 7(1): 324–337. doi: 10.1149/2.099203jes
  • Gu, H.Y., Yu, A.M. and Chen, H.Y. (2001). Electrochemical behavior and simultaneous determination of vitamin B2, B6, and C at electrochemically pretreated glassy carbon electrode. Anal. Lett., 34(13) : 2361–2374. doi: 10.1081/AL-100107301
  • Zhang, Y. and Wang, Y. (2011). Voltammetric determination of vitamin B6 at glassy carbon electrode modified with gold nanoparticles and multi-walled carbon nanotubes. Am. J. Anal. Chem., 2(1): 194–199. doi: 10.4236/ajac.2011.22022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.