55
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Coumarin Based Receptor for Naked Eye Detection of Inorganic Fluoride Ion in Aqueous Media

, &
Pages 170-187 | Received 17 Oct 2016, Accepted 08 Mar 2017, Published online: 20 Jun 2017

References

  • Aumont, G., Tressol, J. (1986). Improved routine method for the determination of total iodine in urine and milk. Analyst 3: 841–857.
  • Jalai, F., Rajabi, M.J., Bahrami, G., Shamsipur, C. (2005). Anal. Sci. 21: 1533–1535
  • Gunnlaugsson, T., Davis, A.P., O’Brien, J.E., Glynn, M. (2002). Fluorescent sensing of pyrophosphates and bis-carboxylates with charge neutral PET chemosensors. Org. Lett. 4: 2449–2452.
  • Majumdar, K.K. (2011). Health impact of supplying safe drinking water containing fluoride below permissible level on flourosis patients in a fluoride-endemic rural area of West Bengal Indian. J. Public Health. 55: 303–308.
  • Haimanot, R.T. (1990). Neurological complications of endemic skeletal fluorosis, with special emphasis on radiclo-myelopathy. Paraplegia. 28: 244–251.
  • Akapata, E.S., Danifillo, I.S., Otoh, E.C., Mafeni, J.O. (2001). Geographical mapping of fluoride levels in drinking water sources in Nigeria. African Health Sci. 9: 227–233.
  • Hussain, I., Arif, M., Hussain, J. (2012). Fluoride contamination in drinking water in rural habitations of Central Rajasthan, India. Environ. Monit. Assess. 184: 5151–5158.
  • Ayoob, S., Gupta, A.K. (2006). Critical Reviews in Environmental Science and Technology. 36: 433–487.
  • Su, H., Huang, W., Yang, Z., Lin, H., Lin, H. (2012). 2-Hydroxy-naphth-1-aldehyde phenyl-thiosemicarbazone: effective thiourea-based sensor for acetate anion J. Incl. Phenom. Macrocycl Chem. 72: 221–225.
  • Gupta, V.K., Jain, A.K., Kumar, P. (2006). PVC-based membranes of N, N’-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor. Sens. Actuators B. 120: 259–265.
  • Gupta, V.K., Jain, A.K., Maheshwari, G., Lang, H., Ishtaiwi, I. (2006). Copper (II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sens. Actuators B. 117: 99–106.
  • Jain, A.K., Gupta, V.K., Singh, L.P., Raisoni, J.R. (2006). A comparative study of Pb+2 selective sensors based on derivatized tetrapyrazole ans calix[4]arene receptors. Electrochim. Acta. 51: 2547–2553.
  • Gupta, V.K., Singh, A.K., Al Khayat, M., Gupta, B. (2007). Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Anal. Chim. Acta. 590: 81–90.
  • Gupta, V.K., Prasad, R., Kumar, P., Mangla, R. (2000). New nickel(II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly(vinyl chloride) matrix. Anal. Chim. Acta 420: 19–27.
  • Gupta, V.K., Jain, S., Chandra, S. (2003). Chemical sensor for lanthanum(III) determination using aza-crown as ionophore in poly(vinyl chloride) matrix. Anal. Chim. Acta 486: 199–207.
  • Gupta, V.K., Jain, A.K., Maheshwari, G. (2007). Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix. Talanta. 72: 1469–1473.
  • Gupta, V.K., Jain, A.K., Agarwal, S., Maheshwari, G. (2007). An iron(III) ion-selective sensor based on a μ-bis(tridentate) ligand. Talanta. 71: 1964–1968.
  • Srivastava, S.K., Gupta, V.K., Jain, S. (1995). Determination of lead using a poly(vinylchloride)-based crown ether membrane. Analyst. 120: 495–498.
  • Jain, A.K., Gupta, A.K., Singh, L.P., Khurana, U. (1997). Macrocycle based membrane sensors for the determination of Cobalt(II) ions. Analyst. 122: 583–586.
  • Gupta, V.K., Ganjali, M.K., Norouzi, P., Khani, H., Nayak, A., Agarwal, S. (2011). Electro-chemical Analysis of some toxic metals by ion-selective electrodes. Critical Reviews in Analytical Chemistry. 41: 282–313.
  • Gupta, V.K., Singh, A.K., Kumawat, L.K. (2014). Thiazole base turn-on fluorescent chemo-sensor for Al3+ ion Sens. Actuat. B 195: 98–108. Sens. Actuators B. 117: 99–106.
  • Gupta, V.K., Singh, A.K., Kumawat, L.K. (2014). A turn-on fluorescent chemosensor for Zn+2 ions based on antipyrine Schiff base. Sens. Actuators B. 204: 507–514.
  • Gupta, V.K., Mergu, N., Singh, A.K. (2014). Fluorescent chemosensors for Zn+2 ions based on flavanol derivatives Sens. Actuat. B. 202: 674–682.
  • Bao, X., Yuhui, Z. (2010). Synthesis and recognition properties of a class of simple colorimetric anion chemosensors containing OH and CONH groups. Sens Actuators B 147: 434–441.
  • Ghosh, A., Ganguly, B., Das, A. (2007). Urea-Based Ruthenium(II) Polypyridyl Complex as an Optical Sensor for Anions: Synthesis, Characterization, and Binding Studies. Inorg. Chem. 46: 9912–9918.
  • Gupta, V.K., Mergu, N., Kumawat, L.K., Singh, A.K. (2015). A reversible fluorescence “off-on-off" sensor for sequential detection of aluminum and acetate/fluoride ions Talanta. 144: 80–89.
  • Maity, D., Das, S., Mardanya, S., Baitalik, S. (2013). Synthesis, Structural Characterization, and Photophysical, Spectroelectrochemical, andAnion-Sensing Studies of Heteroleptic Ruthenium (II) Complexes Derived from 42 -Polyaromatic-Substituted Terpyridine Derivatives and 2,6-Bis (benzimidazol-2-yl)pyridine. Inorg. Chem. 52: 6820–6838.
  • Sakai, R., Barasa, E.B., Sakai, N., Sato, S., Satoh, T., Kakuchi, T. (2012). Colorimetric Detection ofAnions inAqueous Solution Using Poly(phenylacetylene) with Sulfonamide Receptors Activated by Electron Withdrawing Group. Macromolecules. 45: 8221–8227.
  • Huang, F., Cheng, C., Feng, G. (2012). Introducing Ligand-Based Hydrogen Bond Donors to a Receptor: Both Selectivity and BindingAffinity forAnion Recognition in Water Can Be Improved. J. Org. Chem. 77: 11405–11408.
  • Best, M.D., Tobey, S.L., Anslyn, E.V. (2003). Abiotic guanidinium containing receptors for anionic species Coord. Chem. Rev. 240: 3–15.
  • Ke, B., Chen. W., Ni, N., Cheng, Y., Dai, C, Dinh, H., Wang, B. (2003). A fluorescent probe for rapid aqueous fluoride detection and cell imaging. Chem. Commun. 49: 2494–2496.
  • Amendola, V., Bonizzoni, M., Esteban-Gomez, D., Fabbrizzi, L., Licchelli, M., Sancenon, F., Taglietti, A. (2006). Some guidelines for the design of anion receptors Coord. Chem. Rev. 250: 1451–1470.
  • Gomes dos Santos, C.M., Boyle, E.M., De Solis, S., Kruger, P.E., Gunlaugsson, T. (2011). Selective and tuneable recognition of anions using C3v-symmetrical tripodal urea-amide recepto platforms. Chem. Commun. 47: 12176–12178.
  • Hao, J., Hiratani, K., Kameta, N., Oba, T. (2009). Synthesis of a novel tripodand having 3-hydroxy-2-naphthoeic amide groups and its anion recognition ability. J. Incl. Phenom. Macrocycl Chem. 65: 257–262.
  • Kwon, J.Y., Singh, N.J., Kim, H.N., Kim, S.K., Kim, K.S., Yoon, J. (2004). Fluorescent GTP-Sensing in Aqueous Solution of Physiological pH. J. Am. Chem. Soc. 126: 8892–8893.
  • Li, A.F., Wang, J.H., Wang, F., Jiang, Y.B. (2010). Anion complexation and sensing using modified urea and thiourea-based receptors. Chem. Soc. Rev. 39: 3729–3745.
  • Baggi, G., Boiocchi, M., Ciarrocchi, C., Fabbrizzi, L. (2013). Enhancing the Anion Affinity of Urea-Based Receptors with a Ru(terpy)22+ Chromophore. Inorg. Chem. 52: 5273–5283.
  • Martinez-Manez, R., Sancenon, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chem. Rev. 103: 4419–4476.
  • Kaur, M., Cho, M.J., Choi, D.H. (2014). Chemodosimeter approach: Selective detection of fluoride ion using a diketopyrrolopyrrole derivative. Dyes Pigm. 103: 154–160.
  • Bose, P., Ghosh, P. (2010). Visible and near-infrared sensing of fluoride by indole conjugated urea/thiourea ligands. Chem. Commun. 46: 2962–2964.
  • Shao, J., Quiao, Y., Lin, H., Lin, H.K. (2009). Rational design of benzimidazole based sensor molecules that display positive and negative fluorescence responses to anions. J. Fluoresc. 19: 183–188.
  • Shiraishi, Y., Sumiya, S., Hirai, T. (2010). A coumarin-thiourea conjugate as a fluorescent probe for Hg(II) in aqueous media with a broad pH range 2–12 Org. Biomol. Chem. 8: 1310–1314.
  • Yu, X., Zhang, P., Li, Y., Zhen, X., Geng, L., Wang, Y., Ma, Z. (2014). Intramolecular proton transfer through the adjoining π-conjugated system in Schiff base: Application for colorimetric sensing of fluoride anion. Materials Science and Engineering C. 40: 467–471.
  • Shao, J. (2007). A novel colorimetric and fluorescence anion sensor with a urea group as binding site and a coumarin group as signal unit. Dyes Pigm. 87: 272–276.
  • Ghosh, K., Adhikari, S., Frohlick, R., Petasalakis, J.D., Theodorakopoulos, G. (2011). Experimental and theoretical anion binding studies on coumarin linked thiourea and urea molecules. J. Mol. Struc. 1004: 193–203.
  • Sokkalingam P., Lee, C.H. (2011). Highly Sensitive Fluorescence “Turn-On” Indicator for Fluoride Anion with Remarkable Selectivity in Organic and Aqueous Media. J. Org. Chem. 76: 3820–3828.
  • Khanmohammadi, H., Rezarian, K. (2014). Naked-eye detection of inorganic fluoride in aqueous media using a new azo-azomethine colorimetric receptor enhanced by electron withdrawing groups. RSC Adv. 4: 1032–1038.
  • Kigga, M., Trivedi, D.R. (2014). Naked-eye detection of inorganic fluoride ion in aqueous media using base labile proton: A different approach. J. Fluorine Chem. 160: 1–7.
  • Rall, K.B., Perekalin, V.V. (1955). The synthesis of coumarin-3-carboxylic acids and 3-acetyl-coumarin derivatives using heteropolyacids as heterogeneus and recyclable catalysts. Doklady Akad Nauk SSSR. 100: 715–717.
  • Amendola, V., Estban-Gomez, D., Fabbrizzi, L., Licchelli, M. (2006). What anions do to N-H containing receptors. Acc. Chem. Res. 39: 343–353.
  • Shrivastava, A, Gupta, V.B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2: 21–5.
  • Sengul (2016). Comparing determination methods of detection and quantification limits for aflatoxin analysis in hazelnut. J. Food Drug Anal. 24: 56–62.
  • Benesi, H.A., Hildebrand, J.H. (1949). The benesi-hildebrand method for determination of Kf for DA association and ε values for DA CT absorption. J. Am. Chem. Soc. 71: 2703–2707.
  • Das, P., Mandal, A.K., Kesharwani, M.K., Suresh, E., Ganguly, B., Das, A. (2011). Receptor design and extraction of inorganic fluoride ion from aqueous medium. Chem. Commun. 47: 7398–7400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.