45
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Minireview: Plausible Applications of Chemical Sensors for the Detection of Toxic Metal Ions

&
Pages 113-127 | Received 06 Dec 2018, Accepted 27 Mar 2019, Published online: 24 May 2019

References

  • Duffus, J.H. (2002). Heavy metals-A meaningless term?. Pure and Applied Chemistry. 74: 793–807. doi: 10.1351/pac200274050793
  • Aragay, G., Pons, J. and Merkoc’I, A. (2011). Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 111: 3433–3458. doi: 10.1021/cr100383r
  • Yan, F., Zou, Y., Wang, M., Mu, X., Yang, N. and Chen, L. (2014). Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sensors and Actuators B: Chemical. 192: 488–495. doi: 10.1016/j.snb.2013.11.041
  • Mehta, J., Bhardwaj, S.K., Bhardwaj, N., Paul, A.K., Kumar, P., Kim, K.H. and Deep, A. (2016). Progress in the biosensing techniques for trace-level heavy metals. Biotech. Adv. 34: 47–60. doi: 10.1016/j.biotechadv.2015.12.001
  • Talia, S., Liu, Y., Buchner, V. and Tchounwou, P.B. (2009). Neurotoxic effects and biomarkers of lead exposure: A review. Rev. Environ. Health. 24: 15–45.
  • Pandey, S.K., Singh, P., Singh, J., Sachan, S., Srivastava, S. and Singh, S.K. (2016). Nano-carbon-based electrochemical detection of heavy metals. Electroanalysis. 28: 2472–2488. doi: 10.1002/elan.201600173
  • Yang, X.J. (2010). Determination of heavy metal ions in waste water by the flame atomic absorption spectrometry. Chi. J. Spec. Lab. 27: 247–249.
  • Wang, X., Sun, J., Tong, J., Guan, X., Bian, C. and Xia, S. (2018). Paper-based sensor chip for heavy metal ion detection by SWSV. Micromachines. 9: 150–160. doi: 10.3390/mi9040150
  • Lee, Y.G., Han, J., Kwon, S., Kang, S. and Jang, A. (2016). Development of a rotary disc voltammetric sensor system for semi-continuous and on-site measurements of Pb(II). Chemosphere. 143: 78–84. doi: 10.1016/j.chemosphere.2015.05.069
  • Guo, J., Zhou, M. and Yang, C. (2017). Fluorescent hydrogel waveguide for on-site detection of heavy metal ions. Sci. Rep. 7: 7902–7909. doi: 10.1038/s41598-017-08353-8
  • Kevin M.R., Walker. Jr, E.M., Wu, M., Gillette, C. and Blough. E.R. (2014). Environmental mercury and its toxic effects. J. Preven. Med. Pub. Health. 47: 74–83. doi: 10.3961/jpmph.2014.47.2.74
  • Bruna, F. A., Furieri, L.B., Peçanha, F.M., Wiggers, G.A., Vassallo, P.F. Simões, M.R., Fiorim, J., de Batista, P.R., Fioresi, M., Rossoni, L., Stefanon, I., Alonso, M.J., Salaices, M. and Vassallo. D.V. (2012). Toxic effects of mercury on the cardiovascular and central nervous systems. J. Biomed. Biotech. 2012: 949048–949058.
  • Hong, Y.-S, Kim, Y.-M. and Lee, K.-E. (2012). Methylmercury exposure and health effects. J. Pre. Med. Pub. Health. 45: 353–363. doi: 10.3961/jpmph.2012.45.6.353
  • Greenwood, M.R. (1985). Methylmercury poisoning in Iraq. An epidemiological study of the 1971-1972 outbreak. J. Appl. Toxicol. 5: 148–159.
  • Liu, D.B, Qu, W.S., Chen, W.W., Zhang, W., Wang, Z. and Jiang, X.Y. (2010). Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Ana. Chem. 82: 9606–9610. doi: 10.1021/ac1021503
  • Assi, M.A., Hezmee, M.N.M., Haron, A.W., Sabri, M.Y.M. and Rajion, M.A. (2016). The detrimental effects of lead on human and animal health. Veterinary World. 9: 660–671. doi: 10.14202/vetworld.2016.660-671
  • Ahamed, M. and Siddiqui, M.K.J. (2007). Low level lead exposure and oxidative stress: Current opinions. Clin. Chim. Acta. 383: 57–64. doi: 10.1016/j.cca.2007.04.024
  • Angela, M. (2014). Towards the prevention of lead exposure in South Africa: Contemporary and emerging challenges. Neuro Toxic. 45: 220–223.
  • Michael, F.H., Beck, B.D., Chen, Y., Lewis, A.S. and Thomas, D.J. (2011). Arsenic exposure and toxicology: A historical perspective. Toxic. Sci. 123: 305–332. doi: 10.1093/toxsci/kfr184
  • Lechtman, H. and Klein, S. (1999). The production of copper-arsenic alloys (arsenic bronze) by cosmelting: Modern experiment, ancient practice. J. Archaeo. Sci. 26: 497–526. doi: 10.1006/jasc.1998.0324
  • Victor, D.M., Vucic, E.A., Becker-Santos, D.D., Gil, L. and Lam, W.L. (2011). Arsenic exposure and the induction of human cancers. J. Toxicol. 2011: 1–13.
  • Bhattacharjee, Y. and Chakraborty, A. (2014). Label-Free Cysteamine-capped silver nano-particle-based colorimetric assay for Hg(II) detection in water with subnanomolar exactitude. ACS Sus. Chem. Eng. 2: 2149–2154. doi: 10.1021/sc500339n
  • Zareh, J. and Zali-Boeini. (2017). Highly selective fluorescent and colorimetric chemosensor for detection of Hg2+ ion in aqueous media. Spectrochim. Acta Part A: Mol. Biomol. Spec. 5: 66–70. doi: 10.1016/j.saa.2017.01.065
  • Anju, M., Divya, T. Nikhila, M.P., Arsha Kusumam, T.V., Akhila, A.K., Ansi, V.A. and Renuka, N.K. (2016). An elegant and handy selective sensor for ppt level determination of Mercury ions. RSC Adv. 6: 109506–109513. doi: 10.1039/C6RA22717A
  • Zhang, N., Qiao, R., Su, J., Yan, J., Xie, Z., Qiao, Y., Wang, X. and Zhong, J. (2017). Recent advances of electrospun nanofibrous membranes in the development of chemosensors for heavy metal detection. Small. 13: 1604293–1604310. doi: 10.1002/smll.201604293
  • Chen, X., Nam, S.-W. Jou, M.J., Kim, Y., Kim, S.-J. Park, S. and Yoon, J. (2008). Hg2+ selective fluorescent and colorimetric sensor: Its crystal structure and application to bioimaging. Org. Lett. 10: 5235–5238. doi: 10.1021/ol8022598
  • Lee, M.H., Kang, G.P., Kim, J.W., Ham, S.Y. and Kim, J.S. (2009). Tren-spaced rhodamine and pyrene fluorophores: Excimer modulation with metal ion complexation. Supramol. Chem. 21: 135–141. doi: 10.1080/10610270802527069
  • Ranyuk, E., Douaihy, C.M., Bessmertnykh, A., Denat, F., Averin, A., Beletskaya, I. and Guilard, R. (2009). Diaminoanthraquinone-linked polyazamacrocycles: Efficient and simple colori-metric sensor for lead ion in aqueous solution. Org. Lett. 11: 987–990. doi: 10.1021/ol802926m
  • Ahamed, B.N., Arunachalam, M. and Ghosh, P. (2010). Thiomethoxychalcone-functionalized ferrocene ligands as selective chemodosimeters for mercury(II): Single-crystal X-ray structural signature of the [Hg8 (ì8 -S)(SCH3)12 ]2+ cluster. Inorg. Chem. 49: 4447–4457. doi: 10.1021/ic902300c
  • Huang, J.H., Xu, Y.F. and Qian, X.H. (2009). A Rhodamine-based Hg2+ sensor with highselectivity and sensitivity in aqueous solution: A NS -containing receptor. J. Org. Chem. 74: 2167–2170. doi: 10.1021/jo802297x
  • Fang, C.L., Zhou, J., Liu, X.J., Cao, Z.H. and Shangguan, D.H. (2011). Mercury(II)-mediated formation of imide-Hg-imide complexes. Dalton. Trans. 40: 899–903. doi: 10.1039/C0DT01118E
  • Chen, C.-T. and Huang, W.-P. (2002). A highly selective fluorescent chemosensor for lead ions. J. Am. Chem. Soc. 124: 6246–6247. doi: 10.1021/ja025710e
  • Zapata, F., Caballero, A., Espinosa, A., Tarraga, A. and Molina, P. (2008). Cation coordination induced modulation of the anion sensing properties of a ferrocene-imidazophenanthroline dyad: Multichannel recognition from phosphate-related to chloride anions. J. Org. Chem. 73: 4034–4044. doi: 10.1021/jo800296c
  • Yuan R.Z., Li, H., Shi, B.B., Qu, W.J., Zhang, Y.M., Lin, Q., Yao, H. and Wei, T.B. (2014). A reversible fluorescent chemosensor for the rapid detection of mercury ions (II) in water with high sensitivity and selectivity. RSC Adv. 4: 61320–61323. doi: 10.1039/C4RA09961C
  • Min, C.H., Sangkyun, N., Shin, J.E., Kim, J.K., Jo, T.G. and Kim, C. (2017). A new Schiff-based chemosensor for chromogenic sensing of Cu2+, Co2+ and S2" in aqueous solution: experimental and theoretical studies. New. J. Chem. 41: 3991–3999. doi: 10.1039/C7NJ00054E
  • Nayak, N., Shiva Prasad, K., Pillai, R.R., Armakovic, S. and Armakovic, S.J. (2018). Remarkable sensing behavior of pyrazole-based chemosensor towards Cu(II) ion detection: Synthesis, characterization and theoretical investigations. RSC Adv. 8: 18023–18029. doi: 10.1039/C8RA02905A
  • Somenath, L., Pal, S., Sen, B., Mukherjee, M., Banerjee, S. and Chattopadhyay, P. (2014). Selective and sensitive turn-on chemosensor for arsenite ion at the ppb level in aqueous media applicable in cell staining. Ana. Chem. 86: 11357–11361. doi: 10.1021/ac503255f
  • Zhou, Y., Tang, L., Zeng, G., Zhang, C., Zhang, Y. and Xie, X. (2016). Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: A review. Sensors and Actuators B: Chemical. 223: 280–294. doi: 10.1016/j.snb.2015.09.090
  • Wang, Y.F. and Hu, A.G. (2014). Carbon quantum dots: synthesis, properties and applications. J. Mat. Chem. C. 2: 6921–6939. doi: 10.1039/C4TC00988F
  • Zhu, S.J., Song, Y.B., Shao, J.R., Zhao, X.H. and Yang, B. (2015). Non conjugated polymer dots with crosslink enhanced emission in the absence of fluorophore units. Angew. Chem. Inter. Ed. 54: 14626–14637. doi: 10.1002/anie.201504951
  • Wilson, W.L., Szajowski, P.F. and Brus, L.E. (1993). Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science. 262: 1242–1244. doi: 10.1126/science.262.5137.1242
  • Li, W., Yue, Z., Wang, C., Zhang, W. and Liu, G. (2013). An absolutely green approach to fabricate carbon nanodots from soya bean grounds. RSC Adv. 3: 20662–20665. doi: 10.1039/c3ra43330g
  • Lu, W., Qin, X., Liu, S., Chang, G., Zhang, Y., Luo, Y., Asiri, A.M., Al-Youbi, A.O. and Sun, X. (2012). Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Ana. Chem. 84: 5351–5357. doi: 10.1021/ac3007939
  • Swagatika, S., Behera, B., Maiti, T.K. and Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem. Comm. 48: 8835–8837. doi: 10.1039/c2cc33796g
  • Burcu, B. and Rukan, G. (2017). Naked eye and smartphone applicable detection of toxic mercury ions using fluoroscent carbon nanodots. Turk. J. Chem. 41: 931–943. doi: 10.3906/kim-1701-46
  • Song, D., Yang, R., Wang, H., Li, W., Wang, H., Long, H. and Long, F. (2017). A label-free SERRS-based nanosensor for ultrasensitive detection of mercury ions in drinking water and wastewater effluent. Ana. Methods. 9: 154–162. doi: 10.1039/C6AY02361D
  • Bothra, S., Solanki, J.N. and Sahoo, S.K. (2013). Functionalized silver nanoparticles as chemo-sensor for pH, Hg2+ and Fe3+ in aqueous medium. Sensors and Actuators B: Chemical. 188: 937–943. doi: 10.1016/j.snb.2013.07.111
  • Oliveira, E., Núnez, C., Santos, H.M., Lodeiro, J.F., Lodeiro, A.F., Capelo, J.L. and Lodeiro, C. (2015). Revisiting the use of gold and silver functionalised nanoparticles as colorimetric and fluorometric chemosensors for metal ions. Sensors and Actuators B: Chemical. 212: 297–328. doi: 10.1016/j.snb.2015.02.026
  • Serhiy, M. and Chumanov, G. (2003). Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J. Am. Chem. Soc. 125: 2896–2898. doi: 10.1021/ja029453p
  • Wang, J., Lin, W., Cao, E., Xu, X., Liang, W. and Zhang, X. (2017). Surface plasmon resonance sensors on raman and fluorescence spectroscopy. Sensors. 17: 2719–2737. doi: 10.3390/s17122719
  • Ma, C., Zeng, F., Huang, L.F. and Wu, S.Z. (2011). FRET-based ratiometric detection system for mercury ions in water with polymeric particles as scaffolds. J. Phy. Chem. B. 115: 874–882. doi: 10.1021/jp109594h
  • Shiva Prasad, K., Shruthi, G. and Chandan, S. (2018). Functionalized silver nano-sensor for colorimetric detection of Hg2+ ions: Facile synthesis and docking studies. Sensors. 18: 2698–2705. doi: 10.3390/s18082698
  • Wang, S., Sun, J. and Gao, F. (2015). A turn-on near-infrared fluorescent chemosensor for selective detection of lead ions based on a fluorophore-gold nanoparticle assembly. Analyst. 140: 4001–4006. doi: 10.1039/C5AN00320B
  • Chai, F., Wang, C., Wang, T., Li, L. and Su, Z. (2010). Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl. Mat. Interfaces. 2: 1466–1470. doi: 10.1021/am100107k
  • Tseng, A.A., Notargiacoma, A. and Chen, T.P. (2005). Nanofabrication by scanning probe microscope lithography: A review. J. Vacuum Sci. Tech. B: Microelec. Nanometer Str. Proc. Measure. Phenom. 23: 877–894. doi: 10.1116/1.1926293
  • Wouters, D. and Schubert, U.S. (2004). Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized devices. Angew. Chem. Inter. Ed. 43: 2480–2495. doi: 10.1002/anie.200300609
  • Zhang, S. (2003). Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotech. 21: 1171–1178. doi: 10.1038/nbt874
  • Perez, M.A., Swan, M.D. and Louks, J.W. (2000). Microfibers and method of making. US Patent. 6(110): 588.
  • Pike, R.D. (1999). Superfine microfiber nonwoven web. US Patent. 5(935): 883.
  • Reneker, D.H., Chun, I. and Ertley, D. (2002). Process and apparatus for the production of nanofibers, US Patent. 6(382): 526.
  • Liang, F.-C., Kuo, C.C. Chen, B.-Y. Cho, C.J. Hung, C.-C. Chen, W.-C. and Borsali, R. (2017). RGB-switchable porous electrospun nanofiber chemoprobe-filter prepared from multifunctional copolymers for versatile sensing of pH and heavy metals. ACS Appl. Mat. Interfaces. 9: 16381–16396. doi: 10.1021/acsami.7b00970

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.