25
Views
0
CrossRef citations to date
0
Altmetric
Articles

In Vitro Anti-cholinesterase Activity and Mass spectrometric Analysis of Curculigo orchioides Gaertn., Rhizome Extract

, &
Pages 442-458 | Received 19 Aug 2020, Accepted 03 Oct 2020, Published online: 01 Nov 2020

References

  • Adewusi, E. (2012). In vitro effect of selected medicinal plants on B-amyloid induced toxicity in neuroblastoma cells. 2012; PhD Thesis.
  • Wimo, A., Winblad, B., Jönsson, L. (2010). The worldwide societal costs of dementia: Estimates for 2009. Alzheimer’s Dement. 6: 98-103. doi: 10.1016/j.jalz.2010.01.010
  • Rees, T., Hammond, P.I., Soreq, H., Younkin, S., Brimijoin, S. (2003). Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex. Neurobiol. Aging. 24: 777-787. doi: 10.1016/S0197-4580(02)00230-0
  • Dhanasekaran, S., Perumal, P., Palayan, M. (2015). In-vitro Screening for acetylcholinesterase enzyme inhibition potential and antioxidant activity of extracts of Ipomoea aquatica Forsk: Therapeutic lead for Alzheimer’s disease. J. Appl. Pharm. Sci. 5: 012-016. doi: 10.7324/JAPS.2015.50203
  • Prapulla, S.G. (2012). Chapter 5, Purification and Characterisation. Curr. Med. Chem. 66-84.
  • Tamagno, E., Guglielmotto, M., Aragno, M., Borghi, R., Autelli, R., Giliberto, L., Muraca, G., Danni, O., Zhu, X., Smith, M.A., et al. (2008). Oxidative stress activates a positive feedback between the γ-and β-secretase cleavages of the β-amyloid precursor protein. J. Neurochem. 104: 683-695.
  • Agatonovic-Kustrin, S., Morton, D.W. (2018). HPTLC-Bioautographic methods for selective detection of the antioxidant and α-amylase inhibitory activity in plant extracts. MethodsX [Internet] 5: 797-802. doi: 10.1016/j.mex.2018.07.013
  • Sugimoto, H., Yamanish, Y., Iimura, Y., Kawakami, Y. (2000). Donepezil Hydrochloride (E2020) and Other Acetylcholinesterase Inhibitors. Curr. Med. Chem. 7: 303-39. doi: 10.2174/0929867003375191
  • Pratap, G.K., Ashwini, S., Shantaram, M. (2017). Alzheimer’s disease: A challenge in its management with certain medicinal plants-A review. Int. J. Pharm. Sci. Res. 8: 4960-4972.
  • Nie, Y., Dong, X., He, Y., Yuan, T., Han, T., Rahman, K., Qin, L., Zhang, Q. (2013). Medicinal plants of genus Curculigo: Traditional uses and a phytochemical and ethnopharmacological review. J. Ethnopharmacol. 147: 547-563. doi: 10.1016/j.jep.2013.03.066
  • Machado, L.P., Carvalho, L.R., Young, M.C.M., Cardoso-Lopes, E.M., Centeno, D.C., Zambotti-Villela, L., Colepicolo, P., Yokoya, N.S. (2015). Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts. Brazilian J. Pharmacogn. 25: 657-662. doi: 10.1016/j.bjp.2015.09.003
  • Sahu, M.K., Kaushik, K., Das, A., Jha, H. (2020). In vitro and in silico antioxidant and antiproliferative activity of rhizospheric fungus Talaromyces purpureogenus isolate-ABRF2. Bioresour Bioprocess [Internet] 2020; 7. Available from: https://doi.org/10.1186/s40643-020-00303-z
  • Domenici, V., Ancora, D., Cifelli, M., Serani, A., Veracini, C.A., Zandomeneghi, M. (2014). Extraction of Pigment Information from Near-UV Vis Absorption Spectra of Extra Virgin Olive Oils. 2014;
  • Gomathi, D., Ravikumar, G., Kalaiselvi, M., Vidya, B., Uma, C. (2012). HPTLC fingerprinting analysis of Evolvulus alsinoides (L.) L. J. Acute Med. 2: 77-82. doi: 10.1016/j.jacme.2012.08.004
  • Attimarad, M., Mueen Ahmed, K.K., Aldhubaib, B.E., Harsha, S. (2011). High-performance thin layer chromatography: A powerful analytical technique in pharmaceutical drug discovery. Pharm. Methods. 2: 71-75. doi: 10.4103/2229-4708.84436
  • Hasana, H., Desalegn, E. (2017). Characterization and Quantification of Phenolic Compounds from Leaf of Agarista salicifolia. Herb Med. 03: 1-5. doi: 10.21767/2472-0151.100022
  • Mukherjee, P., Dalai, M., Bhadra, S., Chaudhary, S., Bandyopadhyay, A. (2014). Anticholinesterase activity of the standardized extract of Syzygium aromaticum L. Pharmacogn. Mag. 10: 276. doi: 10.4103/0973-1296.133275
  • Owokotomo, I.A., Ekundayo, O., Abayomi, T.G., Chukwuka, A.V. (2015). In-vitro anticholinesterase activity of essential oil from four tropical medicinal plants. Toxicol. Reports 2: 850-857. doi: 10.1016/j.toxrep.2015.05.003
  • Alvarez, A., Alarco, R., Opazo, C., Campos, E.O., Jose, F., Caldero, F.H., Dajas, F., Gentry, M.K., Doctor, B.P., Mello, F.G. De, et al. (1998). Stable complexes involving Acetylcholinesterase and Amyloid-β peptide change the biochemical properties of the enzyme and Increase the neurotoxicity of Alzheimer’s fibrils. J. Neurosci. 18(9): 3213-3223. doi: 10.1523/JNEUROSCI.18-09-03213.1998
  • Ellman, G.L. (1959). Tissue sulfhydryl groups. Arch Biochem Biophys. 82(1): 70-77. doi: 10.1016/0003-9861(59)90090-6
  • Jain, P.K., Soni, A., Jain, P., Bhawsar, J. (2016). Phytochemical analysis of Mentha spicata plant extract using UV-VIS, FTIR and GC/MS technique. J. Chem. Pharm. Res. 8: 1-6.
  • Bagewadi, Z.K., Siddanagouda R.S. and Baligar, P.G. (2014). Phytoconstituents investigation by LC-MS and evaluation of anti-microbial and anti-pyretic properties of Cynodon dactylon. Int. J. Pharm. Sci. Res. 5: 2874-2889.
  • Ouattara, N., Meda, R.N.T., Hilou, A., Guenné, S., Konaté, K., Coulibaly, A.Y., Kiendrébeogo, M., Millogo, J.F., Nacoulma, O.G. (2013). Anti-acetylcholinesterase and antioxidant activities and HPLC-MS analysis of polyphenol from extracts of Nelsonia canescens (Lam.) Spreng. Asian Pacific J. Trop. Dis. 3: 382-388. doi: 10.1016/S2222-1808(13)60088-2
  • Ashraf, M., Ahmad, K., Ahmad, I., Ahmad, S., Arshad, S., Shah, S.M.A., Nasim, F. ul H. (2011). Acetylcholinesterase and NADH oxidase inhibitory activity of some medicinal plants. J. Med. Plants Res. 5(10): 2086-2089.
  • Ghribia, L., Ghouilaa, H., Omrib, A., Besbesb, M., Hichem, H. Ben. (2014). Antioxidant and anti-acetylcholinesterase activities of extracts and secondary metabolites from Acacia cyanophylla. Asian Pac. J. Trop. Biomed. 4: S417-S423. doi: 10.12980/APJTB.4.2014C1038
  • Inestrosa, N.C., Alvarez, A., Pérez, C.A., Moreno, R.D., Vicente, M., Linker, C., Casanueva, O.I., Soto, C., Garrido, J. (1996). Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme. Neuron. 16: 881-891. doi: 10.1016/S0896-6273(00)80108-7
  • Berson, A., Knobloch, M., Hanan, M., Diamant, S., Sharoni, M., Schuppli, D., Geyer, B.C., Ravid, R., Mor, T.S., Nitsch, R.M. et al. (2008). Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain. 131(1): 109-119. doi: 10.1093/brain/awm276
  • Arora, S., Kumar, G., Meena, S. (2017). Gas chromatography-mass spectroscopy analysis of root of an economically important plant, Cenchrus ciliaris L. from Thar desert, Rajasthan (India). Asian J. Pharm. Clin. Res. 10: 64-69. doi: 10.22159/ajpcr.2017.v10i9.19259
  • Pratap, G.K. and Shantaram, M. (2020). A Kinetic Study of Acetylcholinesterase Inhibition by Fractions of Olea Dioica Roxb., leaf and Curculigo orchioides Gaertn., Rhizome for the Treatment of Alzheimer’s Disease. European Journal of Medicinal Plants. 1-12. doi: 10.9734/ejmp/2019/v30i430188
  • Banakar, P. and Jayaraj, M. (2018). GC-MS analysis of Bioactive Compounds from Ethanolic Leaf extracts of Waltheria indica Linn. and their Pharmacological activities. IJPSR. 9(5): 2005-2010.
  • Anand Gideon, V. (2015). GC-MS analysis of phytochemical components of Pseudoglochidion anamalayanum Gamble: An endangered medicinal tree. Pelagia Research Library Asian Journal of Plant Science and Research. 5(12): 36-41.
  • Rahman, M.M., Ahmad, S.H., Mohamed, M.T.M. (2014). Antimicrobial Compounds from Leaf Extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata. Scientific World Journal. 12-18.
  • Arora, S., Kumar, G. and Meena, S. (2017). Gas chromatography-mass spectroscopy analysis of root of an economically important plant, Cenchrus ciliaris L. from Thar desert, Rajasthan (India). Asian Journal of Pharmaceutical and Clinical Research. 10(9), 64-69. doi: 10.22159/ajpcr.2017.v10i9.19259
  • Lazreg-Aref, H., Mars, M., Fekih, A., Aouni, M. and Said, K. (2012). Chemical composition and antibacterial activity of a hexane extract of Tunisian caprifig latex from the unripe fruit of Ficus carica. Pharmaceutical Biology. 50(4): 407-412. doi: 10.3109/13880209.2011.608192
  • Wal, P., Wal, A., Sharma, G. and Rai, A.K. (2011). Biological activities of lupeol. Systematic Reviews in Pharmacy. 2(2): 96-103. doi: 10.4103/0975-8453.86298

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.