25
Views
2
CrossRef citations to date
0
Altmetric
Articles

Poly (L-lactide)-Carboxamide-CoPc with Composite MWCNTs on Glassy Carbon Electrode Sensitive Detection of Hydrazine and L-Cysteine

, , &
Pages 620-635 | Received 02 Oct 2020, Accepted 27 Nov 2020, Published online: 23 Dec 2020

Reference

  • Devasenathipathy, R., Palanisamy, S., Chen, S-M., Karuppiah, C., Mani, V., Kannan Ramaraj, S., Ajmal Ali, M., Fahad Al-Hemaid, M.A. (2015). An Amperometric Biological Toxic Hydrazine Sensor Based on Multiwalled Carbon Nanotubes and Iron Tetrasulfonated Phthalocyanine Composite Modified Electrode. Electroanalysis. 27: 1403-1410. doi: 10.1002/elan.201400659
  • Wang, Z.X., Rejtar, T., Zhou, Z.S. (2010). Desulfurization of cysteine containing peptides resulting from sample preparation for protein characterization by mass spectrometry. Rapid. Commun. Mass. Spectrom. 24: 267. doi: 10.1002/rcm.4383
  • Ouchi, T., Uchida, T., Arimura, H., Ohya, Y. (2003). “Synthesis of poly(L-lactide) end-capped with lactose residue”. Biomacromolecules. 4(3): 477-480. doi: 10.1021/bm020110t
  • Leznoff C.C., Lever, A.B.P. (1996). Phthalocyanines properties and applications, VCH, Weinheim. pp. 1-4.
  • Chaure, S., Paul, D., Vadagma, P., Ray, A.K., Hazard, J. (2010). Spectroscopic investigation of sulfonate phthalocyanine to probe enzyme reactions for heavy metals detection. Journal of Hazardous Materials. 173: 253. doi: 10.1016/j.jhazmat.2009.08.077
  • Basova, T.V., Parkhomenko, R.G., Igumenov, I.K., Hassan, A., Durmus, M., Gurek, A.G., Ahsen, V. (2014). Composites of Liquid Crystalline Nickel Phthalocyanine with Gold Nanoparticles: Liquid Crystalline Behaviour and Optical Properties. Dyes Pigment. 111: 58. doi: 10.1016/j.dyepig.2014.05.033
  • Nabok, A.V., Ray, A.K., Hassan, A.K., Travis, J.R., Cook, M.J. (1997). Further optical studies on Langmuir-Blodgett films of octa-substituted metal-free phthalocyanines. J. Supramol. Sci. 4: 407. doi: 10.1016/S0968-5677(97)00022-9
  • Chen, X., Hu, X., An, L., Zhang, N., Xia, D., Zuo, X., Wang, X. (2014). Electrocatalytic Dechlorination of Atrazine Using Binuclear Iron Phthalocyanine as Electrocatalysts. Electro- catalysis. 5: 68. doi: 10.1007/s12678-013-0164-z
  • Bilgicli, A.T., Kandaz, M., Ozkaya, A.R., Salih, B. (2009). Tetrakis-Phthalocyanines Bearing Electron-Withdrawing Fluoro Functionality: Synthesis, Spectroscopy, and Electrochemistry. Heteroat. Chem. 20: 262. doi: 10.1002/hc.20545
  • Hohnholz, D., Steinbrecher, S., Hanack, M. (2000). Applications of phthalocyanines in organic light emitting devices. J. Mol. Struct. 521: 231. doi: 10.1016/S0022-2860(99)00438-X
  • Kobayashi, N. (2002). Dimers, trimers and oligomers of phthalocyanines and related compounds. Coord. Chem. Rev. 227: 129. doi: 10.1016/S0010-8545(02)00010-3
  • Leakakos, T., Shank, R.C. (1994). Hydrazine genotoxicity in the neonatal rat, Toxicol. Appl. Pharmacol. 126: 295-300. doi: 10.1006/taap.1994.1119
  • Zheng, H., Shank, R.C. (1996). Changes in methyl-sensitive restriction sites of liver DNA from hamsters chronically exposed to hydrazine sulfate. Carcinogenesis. 17: 2711-2717. doi: 10.1093/carcin/17.12.2711
  • Malaki, E.A., Koupparis, M.A. (1989). Kinetic study of the determination of hydrazines, isoniazid, and sodium azide by monitoring their reactions with 1-fluoro-2,4-dinitrobenzene, by means of a fluoride-selective electrode. Talanta. 36: 431-436. doi: 10.1016/0039-9140(89)80224-3
  • Ji, H.M., Hou, W.Y., Wang, E.K. (1992). Amperometric flow-injection analysis of hydrazine by electrocatalytic oxidation at cobalt tetraphenylporphyrin modified electrode with heat treatment. Talanta. 39: 45-50. doi: 10.1016/0039-9140(92)80048-I
  • Xia, H., Li, H.L., Yang, D.Q. (1997). Voltammetric determination of hydrazine based on catalytic reaction in the presence of 4-hydroxy-2,2,6,6-tetramethylpiperdinyloxy (TEMPOL) radical. Electroanalysis. 9: 1429-1431. doi: 10.1002/elan.1140091811
  • ElBrashy, A.M., ElHussein, L.A. (1997). Colorimetric determination of some important hydrazine derivatives. Anal. Lett. 30: 609-622. doi: 10.1080/00032719708001805
  • Wang, J., Chatrathi, M.P., Tian, B.M., Polsky, R. (2000). Capillary electrophoresis chips with thick-film amperometric detectors: separation and detection of hydrazine compounds. Electro- analysis. 12: 691-694. doi: 10.1002/1521-4109(200005)12:9<691::AID-ELAN691>3.0.CO;2-K
  • Siangproh, W., Chailapakul, O., Laocharoensuk, R., Wang, J. (2005). Microchip capillary electrophoresis/electrochemical detection of hydrazine compounds at a cobalt phthalocyanine modified electrochemical detector. Talanta. 67: 903-907. doi: 10.1016/j.talanta.2005.04.024
  • Xiao, C.D., Luong, J.H.T. (2010). A simple mathematical model for electric cell-substrate impedance sensing with extended applications. Biosens. Bioelectron. 25: 1774. doi: 10.1016/j.bios.2009.12.025
  • Kubalczyk, P., Bald, E. (2009). Analysis of orange juice for total cysteine and glutathione content by CZE with UV-absorption detection. Electrophoresis. 30: 2280. doi: 10.1002/elps.200800741
  • Sudeep, P.K., Joseph, S.B., George, S.T., Thomas, K. (2005). Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 127: 6516. doi: 10.1021/ja051145e
  • Pelletier, S., Lucy, C.A. (2004). HPLC simultaneous analysis of thiols and disulfides: on-line reduction and indirect fluorescence detection without derivatization. Analyst. 129: 710. doi: 10.1039/b401618a
  • Govindasamy, M., Mani, V., Chen, S-M., Maiyalagan, T., Selvaraj, S., Chen, T-W., Lee, S-Y., Chang, W-H. (2017). Highly sensitive determination of non-steroidal anti-inflammatory drug nimesulide using electrochemically reduced graphene oxide nanoribbons. RSC Adv. 7(52): 33043-33051. doi: 10.1039/C7RA02844J
  • Mounesh., Jilani, B.S., Malatesh, P., Venugopala Reddy, K.R., Lokesh, K.S. (2019). Simultaneous and sensitive detection of ascorbic acid in presence of dopamine using MWCNTs decorated cobalt (II) phthalocyanine modified GCE. Microchemical Journal. 147: 755-763. doi: 10.1016/j.microc.2019.03.090
  • Mounesh., Venugopala Reddy, K.R. (2020). Sensitive and reliable electrochemical detection of Nitrite and H2O2 Embellish-CoPc coupled with Appliance of composite MWCNTs. Anal. Chim. Acta. 1108: 98-107. doi: 10.1016/j.aca.2020.02.057
  • Mounesh., Venugopala Reddy, K.R. (2020). Electrochemical Investigation of modified GCE on Carboxamide-PEG2-Biotin-CoPc using Composite MWCNTs: Sensitive detection for Glucose and Hydrogen Peroxide. New. J. Chem. 44(8): 3330-3340. doi: 10.1039/C9NJ05807A
  • Mounesh., Venugopala Reddy, K.R. (2020). Detection of Nanomolar Concentrations H2O2 Using Cobalt (II) Phthalocyanine Modified GCE with MWCNTs. Anal. Chem. Lett. 10(1): 33-48.
  • Mounesh., Venugopala Reddy, K.R. (2020). Novel Tetracinnamide Cobalt (II) Phthalocyanine Immobilized on MWCNTs for Amperometic Sensing of Glucose. Anal. Chem. Lett. 10(2): 137-151.
  • Mounesh., Venugopala Reddy, K.R. (2020). Novel garnished cobalt(II) phthalocyanine with MWCNTs on modified GCE: sensitive and reliable electrochemical investigation of paracetamol and dopamine. New. J. Chem. 44: 16831-16844. doi: 10.1039/D0NJ03926H
  • Mounesh., Malthesh, P., Praveen Kumar, N.Y., Jilani, B.S., Mruthyunjayachari, C.D., Venugopala Reddy, K.R. (2019). Synthesis and characterization of tetra-ganciclovir cobalt(II) phthalocyanine for electroanalytical applications of AA/DA/UA. Heliyon. 5: e01946. doi: 10.1016/j.heliyon.2019.e01946
  • Ding, L., Qiao, J., Dai, X., Zhang, J., Zhang, J., Tian, B. (2012). Highly active electrocatalysts for oxygen reduction from carbon-supported copper-phthalocyanine synthesized by high temperature treatment. Int. J. Hydrogen Energy. 37: 14103-14113. doi: 10.1016/j.ijhydene.2012.07.046
  • Ozoemena, K.I., Nyokong, T. (2005). Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. Talanta. 67: 162-168. doi: 10.1016/j.talanta.2005.02.030
  • Ozoemena, K.I., Westbroek, P., Nyokong, T. (2001). Long-term stability of a gold electrode modified with a self-assembled monolayer of octabutylthiophthalocyaninato-cobalt (II) towards L-cysteine detection. Electrochem. Comm. 3: 529-534. doi: 10.1016/S1388-2481(01)00213-2
  • Mani, V., Huang, S-T., Devasenathipathy, R., Yang, C.T.K. (2016). Electropolymerization of cobalt tetra amino-phthalocyanine at reduced graphene oxide for electrochemical determination of cysteine and hydrazine. RSC Adv. 6: 38463-38469. doi: 10.1039/C6RA01851C
  • Pradac, J., Koryta, J. (1968). Electrode processes of the sulfhydryl-disulfide system III. Cysteine at platinum and gold electrodes. J. Electroanal. Chem. 17: 185-189. doi: 10.1016/S0022-0728(68)80042-7
  • Ralph, T.R., Hitchman, M.L., Millington, J.P., Walsh, F.C. (1994). The electrochemistry of L-cysteine and L-cystine Part I: Thermodynamic and kinetic studies. J. Electroanal. Chem. 375: 1-15. doi: 10.1016/0022-0728(94)03407-9
  • Fei, S., Chen, J., Yao, S., Deng, G., He, D., Kuang, Y. (2005). Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modiWed with platinum. Anal. Biochem. 339: 29-35. doi: 10.1016/j.ab.2005.01.002
  • Li, Jing., Lin, Xiangqin. (2007). Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticles polypyrrole nanowire modified glassy carbon electrode. Sensors and Actuators B: Chem. 126: 527-535. doi: 10.1016/j.snb.2007.03.044
  • Casella, I.G., Guascito, M.R., Salvi, A.M., Desimoni. E. (1997). Catalytic oxidation and flow detection of hydrazine compounds at a nafion/ruthenium(III) chemically modified electrode. Anal. Chim. Acta. 354: 333-341. doi: 10.1016/S0003-2670(97)00453-4
  • Filanovsky, B. (1999). Electrochemical response of new carbon electrodes bulk modified with cobalt phthalocyanine to some thiols in the presence of heptane or human urine. Anal. Chim. Acta. 394: 91. doi: 10.1016/S0003-2670(99)00035-5
  • Siangproh, W., Chailapakul, O., Laocharoensuk, R., Wang, J. (2005). Microchip capillary electrophoresis/electrochemical detection of hydrazine compounds at a cobalt phthalocyanine modified electrochemical detector. Talanta. 67: 903-907. doi: 10.1016/j.talanta.2005.04.024
  • Li, X., Zhang, S., Sun, C. (2003). Fabrication of a covalently attached multilayer film electrode containing cobalt phthalocyanine and its electrocatalytic oxidation of hydrazine. J. Electroanal. Chem. 553: 139-145. doi: 10.1016/S0022-0728(03)00307-3
  • Buratti, S., Brunettia, B., Mannino, S. (2008). Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes. Talanta. 76: 454. doi: 10.1016/j.talanta.2008.03.031
  • Mashazi, P.N., Westbroek, P., Ozoemena, K.I., Nyokong, T. (2007). Surface chemistry and electrocatalytic behaviour of tetra-carboxy substituted iron, cobalt and manganese phthalo- cyanine monolayers on gold electrode. Electrochim. Acta. 53: 1858-1869. doi: 10.1016/j.electacta.2007.08.044
  • Ozoemena, K.I., Nyokong, T., Westbroek, P. (2003). Self Assembled Monolayers of Cobalt and Iron Phthalocyanine Complexes on Gold Electrodes: Comparative Surface Electrochemistry and Electrocatalytic Interaction with Thiols and Thiocyanate. Electroanalysis. 15: 1762. doi: 10.1002/elan.200302753
  • Li, J., Xie, H., Chen. L. (2011). A sensitive hydrazine electrochemical sensor based on electro- deposition of gold nanoparticles on choline film modified glassy carbon electrode. Sens. Actuators B: Chem. 153: 239-245. doi: 10.1016/j.snb.2010.10.040
  • Mani, V., Ezhil Vilian, A.T., Chen, S.-M. (2012). Graphene Oxide Dispersed Carbon Nanotube and Iron Phthalocyanine Composite Modified Electrode for the Electrocatalytic Determination of Hydrazine. Int. J. Electrochem. Sci. 7: 12774-12785.
  • Umasankar, Y., Huang, T.Y., Chen, S.M. (2011). Vitamin B12 incorporated with multiwalled carbon nanotube composite film for the determination of hydrazine. Anal. Biochem. 408: 297. doi: 10.1016/j.ab.2010.09.037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.