55
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Determination of Antioxidant Capacity, Phenolic and Elemental Composition in Syriac (Mardin) Wines by using Chromatographic and Spectrophotometric Methods

, , &
Pages 55-72 | Received 24 Oct 2020, Accepted 19 Jan 2021, Published online: 24 Feb 2021

References

  • Peluso, I. (2019). Dietary antioxidants: Micronutrients and antinutrients in physiology and pathology. Antioxidants 8(12): 642. doi: 10.3390/antiox8120642
  • Ricci, A., Teslic, N., Petropolus, V.I., Parpinello, G.P., Versari, A. (2019). Fast Analysis of Total Polyphenol Content and Antioxidant Activity in Wines and Oenological Tannins Using a Flow Injection System with Tandem Diode Array and Electrochemical Detections. Food Anal. Methods 12(2): 347-354. doi: 10.1007/s12161-018-1366-z
  • Hervert-Hernández, D., Goñi, I. (2011). Dietary polyphenols and human gut microbiota: A review. Food Rev. Int. 27(2): 154-169. doi: 10.1080/87559129.2010.535233
  • Rasouli, H., Hosein Farzaei, M., Khodarahmi, R. (2017). International Journal of Food Properties Polyphenols and their benefits: A review. Int. J. Food Prop. 20: 1700-1741. doi: 10.1080/10942912.2016.1193515
  • Khalesi, S., Sun, J., Buys, N., Jamshidi, A., Nikbakht-Nasrabadi, E., Khosravi-Boroujeni, H. (2014). Green tea catechins and blood pressure: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Nutr. 53(6): 1299–1311. doi: 10.1007/s00394-014-0720-1
  • Khalifa, I., Zhu, W., Li, K.K., Li, C.M. (2018). Polyphenols of mulberry fruits as multifaceted compounds: Compositions, metabolism, health benefits, and stability-A structural review. J. Funct. Foods. 40: 28-43. doi: 10.1016/j.jff.2017.10.041
  • Li, Y., Zhang, L., Wang, X., Wu, W., Qin, R. (2019). Effect of Syringic acid on antioxidant biomarkers and associated inflammatory markers in mice model of asthma. Drug Dev. Res. 80 (2): 253-261. doi: 10.1002/ddr.21487
  • Ragusa, A., Centonze, C., Grasso, M.E., Latronico, M.F., Mastrangelo, P.F., Sparascio, F., Maffia, M. (2019). HPLC analysis of phenols in Negroamaro and primitivo red wines from salento. Foods, 8(2): 45. doi: 10.3390/foods8020045
  • Toaldo, I.M., Van Camp, J., Gonzales, G.B., Kamiloglu, S., Bordignon-Luiz, M.T., Smagghe, G., Raes, K., Capanoglu, E., Grootaert, C. (2016). Resveratrol improves TNF-α-induced endothelial dysfunction in a coculture model of a Caco-2 with an endothelial cell line. J. Nutr. Biochem. 36: 21-30. doi: 10.1016/j.jnutbio.2016.07.007
  • Tamasi, G., Pardini, A., Bonechi, C., Donati, A., Leone, G., Consumi, M., Pagni, D., Cini, R., Rossi, C., Magnani, A. (2019). Antioxidant Species in Grapes and Wines via Spectrophoto- metric Methods: No Quenching Effects by Copper(II) and Yeast Derivative Treatments. J. Chem. 1354382.
  • Zurga, P., Vahcic, N., Paskovic, I., Banovic, M., Staver, M.M. (2019). Croatian Wines from Native Grape Varieties Have Higher Distinct Phenolic (Nutraceutic) Profiles than Wines from Non Native Varieties with the Same Geographic Origin. Chem. Biodivers. 16: e1900218. doi: 10.1002/cbdv.201900218
  • Amorós, J.A., Pérez-de-los Reyes, C., García Navarro, F.J., Bravo, S., Chacón, J.L., Martínez, J., Jiménez Ballesta, R. (2013). Bioaccumulation of mineral elements in grapevine varieties cultivated in “La Mancha.” J. Plant Nutr. Soil Sci. 176: 843-850. doi: 10.1002/jpln.201300015
  • Geana, I., Iordache, A., Ionete, R., Marinescu, A., Ranca, A., Culea, M. (2013). Geographi- cal origin identification of Romanian wines by ICP-MS elemental analysis. Food Chem. 138(2-3): 1125-1134. doi: 10.1016/j.foodchem.2012.11.104
  • Czech, A., Malik, A. (2012). Content of bioactive compounds in semi-dry red wine. J. Elem. 17(2): 191-200.
  • Tariba, B. (2011). Metals in wine - Impact on wine quality and health outcomes. Biol. Trace Elem. Res. 144(1-3): 143-156. doi: 10.1007/s12011-011-9052-7
  • Iwegbue, C.M.A., Ojelum, A.L., Bassey, F.I. (2014). A survey of metal profiles in some traditional alcoholic beverages in Nigeria. Food Sci. Nutr. 2(6): 724-733. doi: 10.1002/fsn3.163
  • Christofi, S., Malliaris, D., Katsaros, G., Panagou, E., Kallithraka, S. (2020). Limit SO2 content of wines by applying High Hydrostatic Pressure. Innov. Food Sci. Emerg. Technol. 62: 102342. doi: 10.1016/j.ifset.2020.102342
  • Czepak, M.P., Costa, A., Pereira, G.E., Teodoro De Souza, R., Gonçalves, L.C., Schmildt, E.R. (2016). Physicochemical characterization of wines obtained of cultivar Isabel (hybrid of Vitis vinifera x Vitis labrusca) from different Brazilian states; Physicochemical characterization of wines obtained of cultivar Isabel (hybrid of Vitis vinifera x Vitis labrusca) from different Brazilian states. 39th World Congress of Vine and Wine. 7: 02020.
  • Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 52(26): 7970-7981. doi: 10.1021/jf048741x
  • Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144-158.
  • Göktürk Baydar, N., Babalik, Z., Hallaç Türk, F., Çetin E.S. (2011). Phenolic Composition and Antioxidant Activities of Wines and Extracts of Some Grape Varieties Grown in Turkey. Journal of Agricultural Sciences. 17: 67-76.
  • Alp, H., Ince, M., Ince, O.K., Onal, A. (2020). Evaluation the Weekly Intake of Some Wild Edible Indigenous Mushrooms Collected in Different Regions in Tunceli, Turkey. Biol. Trace Elem. Res. 195(1): 239-249. doi: 10.1007/s12011-019-01814-3
  • FAO/WHO, (2011). Joint FAO/WHO food standards programme codex committee on contami- nants in foods fifth session working document for information and use in discussions related to contaminants and toxins ýn the gsctff (Prepared by Japan and the Netherlands).
  • Shaheen, N., Irfan, N.M., Khan, I.N., Islam, S., Islam, M.S., Ahmed, M.K. (2016). Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh. Chemosphere, 152: 431-438. doi: 10.1016/j.chemosphere.2016.02.060
  • Yu, Y., Wang, X., Yang, D., Lei, B., Zhang, X., Zhang, X. (2014). Evaluation of human health risks posed by carcinogenic and non-carcinogenic multiple contaminants associated with consump- tion of fish from Taihu Lake, China. Food Chem. Toxicol. 69: 86-93. doi: 10.1016/j.fct.2014.04.001
  • Bimpilas, A., Tsimogiannis, D., Balta-Brouma, K., Lymperopoulou, T., Oreopoulou, V. (2015). Evolution of phenolic compounds and metal content of wine during alcoholic fermentation and storage. Food Chem. 178: 164-171. doi: 10.1016/j.foodchem.2015.01.090
  • Büyüktuncel, E., Porgalι, E., Çolak, C. (2014). Comparison of Total Phenolic Content and Total Antioxidant Activity in Local Red Wines Determined by Spectrophotometric Methods. Food Nutr. Sci. 05(17): 1660-1667.
  • Cakar, U.D., Petrovic, A.V, Zivkovic, M.B., Vajs, V.E., Milovanovic, M.M., Zeravik, J., Ðordevic, B.I. (2016). Phenolic profile of some fruit wines and their antioxidant properties. 6: 661-672.
  • Jiang, B., Sun, Z.Y. (2019). Phenolic compounds, total antioxidant capacity and volatile compo- nents of cabernet sauvignon red wines from five different wine-producing regions in China. Food Sci. Technol. 39(3): 735-746. doi: 10.1590/fst.07818
  • Han, Y., Du, J., Li, J., Li, M. (2019). Quantification of the organic acids in hawthorn wine: A comparison of two HPLC methods. Molecules, 24(11): 2150-2164. doi: 10.3390/molecules24112150
  • Crumpton, M., Rice, C.J., Atkinson, A., Taylor, G., Marangon, M. (2018). The effect of sucrose addition at dosage stage on the foam attributes of a bottle-fermented English sparkling wine. J. Sci. Food Agric. 98(3): 1171-1178. doi: 10.1002/jsfa.8570
  • Cinquanta, L., De Stefano, G., Formato, D., Niro, S., Panfili, G. (2018). Effect of pH on malolactic fermentation in southern Italian wines. Eur. Food Res. Technol. 244(7): 1261-1268. doi: 10.1007/s00217-018-3041-4
  • Liu, X., Li, J., Tian, Y., Liao, M., Zhang, Z. (2016). Influence of berry heterogeneity on phenolics and antioxidant activity of grapes and wines: A primary study of the new winegrape cultivar meili (Vitis vinifera L). PLoS ONE. 11(3): e0151276. doi: 10.1371/journal.pone.0151276
  • Garaguso, I., Nardini, M. (2015). Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines. Food Chem. 179: 336-342. doi: 10.1016/j.foodchem.2015.01.144
  • Wasila, H., Li, X., Liu, L., Ahmad, I., Ahmad, S. (2013). Peel effects on phenolic composition, antioxidant activity, and making of pomegranate juice and wine. J. Food Sci. 78(8): C1166-C1172. doi: 10.1111/1750-3841.12204
  • Turkish Food Codex Wine Notification, 2009. https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=12833&MevzuatTur=9&MevzuatTertip=5
  • Arcanjo, N.M. de O.A., Neri-Numa, I.A., Bezerra, T.K.A., da Silva, F.L.H., Pastore, G.M., Madruga, M.S. (2017). Quality evaluation of red wines produced from the Isabella and Ives cultivar (Vitis labrusca): physicochemical parameters, phenolic composition and antioxidant activity. Food Sci. Technol. Campinas. 37(2): 184-192. doi: 10.1590/1678-457x.16516
  • Özkan, G., Göktürk Baydar, N. (2006). A direct RP-HPLC determination of phenolic compounds in Turkish red wines. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi. 19(2): 229-234.
  • Cakar, U., Petrovic, A., Jankovic, M., Pejin, B., Vajs, V., Cakar, M., Djordjevic, B. (2018). Differentiation of wines made from berry and drupe fruits according to their phenolic profiles. Eur. J. Hortic. Sci. 83(1): 49-61.
  • Lingua, M.S., Fabani, M.P., Wunderlin, D.A., Baroni, M.V. (2016). In vivo antioxidant activity of grape, pomace and wine from three red varieties grown in Argentina: Its relationship to phenolic profile. J. Funct. Foods 20: 332-345. doi: 10.1016/j.jff.2015.10.034
  • Dutra, M. da C.P., Rodrigues, L.L., de Oliveira, D., Pereira, G.E., Lima, M. dos S. (2018). Integrated analyses of phenolic compounds and minerals of Brazilian organic and conventional grape juices and wines: Validation of a method for determination of Cu, Fe and Mn. Food Chem. 269: 157-165. doi: 10.1016/j.foodchem.2018.07.014
  • Bai, S., Cui, C., Liu, J., Li, P., Li, Q., Bi, K. (2018). Quantification of polyphenol composition and multiple statistical analyses of biological activity in Portuguese red wines. Eur. Food Res. Technol. 244(11): 2007-2017. doi: 10.1007/s00217-018-3112-6
  • Zhang, J., Chen, D., Chen, X., Kilmartin, P., Quek, S.Y. (2019). The Influence of Vinification Methods and Cultivars on the Volatile and Phenolic Profiles of Fermented Alcoholic Beverages from Cranberry. Antioxidants, 8(5): 144. doi: 10.3390/antiox8050144
  • Rupasinghe, H.P.V., Clegg, S. (2007). Total antioxidant capacity, total phenolic content, mineral elements, and histamine concentrations in wines of different fruit sources. J. Food Compos. Anal. 20(2): 133-137. doi: 10.1016/j.jfca.2006.06.008
  • Mlcek, J., Adámková, A., Škrovánková, S., Adámek, M., Ondrášová, M. (2019). Comparison of antioxidant activity, content of polyphenols and flavonoids in liturgical and common wines - Yahoo Turkey Arama Sonuçlarι. Slovak J. Food Sci. Influ. 218-223.
  • Villaño, D., Fernández-Pachón, M.S., Moyá, M.L., Troncoso, A.M., García-Parrilla, M.C. (2007). Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta. 71(1): 230-235. doi: 10.1016/j.talanta.2006.03.050
  • Stepniowska, A., Czech, A., Malik, A., Chalabis-Mazurek, A., Ognik, K. (2016). The influence of winemaking on the content of natural antioxidants and mineral elements in wines made from berry fruits. J. Elem. 21(3): 871-880.
  • Bora, F.-D., Donici, A., Moldovan, M.P. (2015). Measurements of trace elements in must and wine using FAAS technique. Adv. Agric. Bot. Int. J. Bioflux Soc. 7(3): 157-165.
  • Degirmenci Karatas, D., Aydin, F., Aydin, I., Karatas, H. (2015). Food Analysis, Food Quality and Nutrition Czech. J. Food Sci. 33(3): 228-236.
  • Kujawa, M. (1994). Evaluation of Certain Food Additives and Contaminants. WHO Technical Report Series 837. 41st Report of the Joint FAO/WHO Expert Committee on Food Additives. 53 Seiten. World Health Organization, Geneva 1993. Preis: 10, -Sw.fr.; 9,-US $. Food/Nahrung, 38 (3): 356-356.
  • WHO, (1982). Introduction (WHO Food Additives Series 17). http://inchem.org/documents/jecfa/jecmono/v17je01.htm
  • EVM, Expert Group on Vitamins and Minerals (2003). Safe Upper Levels for Vitamins and Minerals | Food Standards Agency. Retrieved July 29, 2020, from https://cot.food.gov.uk/committee/committee-on-toxicity/cotreports/cotjointreps/evmreport
  • Institute of Medicine. (2002). Food and Nutrition Board. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. The National Academic Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.