58
Views
2
CrossRef citations to date
0
Altmetric
Research Article

MD, DFT Investigations and Inhibition of the Novel SARS- CoV-2 Mainprotease in Three Cocrystals of Hydrochloro- thiazide

, , , , ORCID Icon &
Pages 450-468 | Received 15 Mar 2021, Accepted 20 May 2021, Published online: 13 Jul 2021

References

  • Sarraguca, M.S., Ribeiuro, P.R.S., Santos, A.O.D., Lopez, J.A. (2015). Batch statistical process monitoring approach to a cocrystallizatin process. J. Pharm. Sci. 104: 4099-4108.
  • Rodrigues, M., Lopes, J., Guedes, A., Sarraguca, J., Sarraguca, M. (2019). Considerations on high-throughput cocrystals screening by ultrasound assisted cocrystallization and vibrational spectroscopy. Spectrochim. Acta. 229: 117876.
  • Sarraguca, M.C., Paisana, M., Pinto, J., Lopez, J.A. (2016). Real-time monitoring of cocrystallization processes by solvent evaporation: a near infrared study. Eur. J. Pharm. Sci. 90: 76-84.
  • Ali, H.R.H., Alhalawh, A., Mendes, N.F.C., Ribeiro-Claro, P., Velaga, S.P. (2012). Solid-state vibrational spectroscopic investigation of cocrystals and salt indomethacin. Crystengcomm. 14: 6665-6674.
  • Limwikrant, W., Nagai, A., Hagiwara, Y., Higashi, K., Yamamoto, K., Moribe, K. (2012). Formation mechanism of a new carbamazepine/malonic acid cocrystal polymorph. Int. J. Pharm. 431: 237-240.
  • Bevill, M.J., Vlahova, P.I., Smit, J.P. (2014). Polymorphic cocrystals of nutraceutical compound p-coumaric acid with nicotinamide: characterization, relative solid-state stability and conversion to alternate stoichiometries. Cryst. Growth Des. 14: 1438-1448.
  • Vishweshwar, P., McMahon, J.A., Bis, J.A., Zaworotko, M.J. (2006). Pharmaceutical co- crystals. J. Pharm. Sci. 95: 499-516.
  • Ranjan, S., Devarapalli, R., Kundu, S., Vangala, V.R., Ghosh, A., Reddy, C.M. (2017). Three new hydrochlorothiazide cocrystals: Structural analyses and solubility studies. J. Mol. Struct. 1133: 405-410.
  • Schultheiss, N., Newman, A. (2009). Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des. 9: 2950-2967.
  • Yan, Y., Chen, J.M., Lu, T.B. (2013). Simultaneously enhancing the solubility and permeability of acyclovir by crystal engineering approach. Cryst. Eng. Comm 15: 6457-6460.
  • Gopi, S.P., Banik, M., Desiraju, G.R. (2017). New cocrystals of hydrochlorothiazide: Optimizing solubility and membrane diffusivity. Cryst. Growth Des. 17: 308-316.
  • Sanphui, P., Devi, V.K., Clara, D., Malviya, N., Ganguly, S., Desiraju, G.R. (2015). Cocrystals of Hydrochlorothiazide: Solubility and Diffusion/Permeability Enhancements through Drug- Coformer Interactions. Mol. Pharmaceutics. 12: 1615-1622.
  • Al-Otaibi, J.S., Mary, Y.S., Mary, Y.S., Panicker, C.Y., Thomas, R. (2019). Cocrystals of pyrazinamide with p-toluenesulfonic and ferulic acids: DFT Investigations and molecular docking studies. J. Mol. Struct. 1175: 916-926.
  • Al-Otaibi, J.S., Mary, Y.S., Mary, Y.S., Thomas, R. (2019). Quantum mechanical and photovoltaic studies on the cocrystals of hydrochlorothiazide with isonazid and malonamide. J. Mol. Struct. 1197: 719-726.
  • Vongpatanasin, M.D.W. (2015). Hydrochlorothiazide (HCTZ) is not the most useful nor versatile thiazide diuretic. Curr. Opin. Cardiol. 30: 361-365.
  • El-hak, A.S.M.G., Mohammed, A.A.K., Hakiem, A.E.A., Mahfouz, R.M. (2019). Mole- cular conformation, vibrational spectroscopic and NBO analysis of atenolol and atenolol- hydrochlorothiazide cocrystals. Spectrochim. Acta. 222: 117200.
  • Armakovic, S.J., Armakovic, S., Cetojevic-Simin, D.D., Sibul, F., Abramovic, B.F. (2018). Photocatalytic degradation of 4-amino-6-chlorobenzene-1,3-disulfonamide stable hydrolysis product of hydrochlorothiazide: Detection on intermediates and their toxicity. Environ. Pollut. 233: 916-924.
  • Singh, V.D., Daharwal, S.J. (2017). Development and validation of multivariate calibration methods for simultaneous estimation of paracetamol, enalapril maleate and hydrochlorothiazide in pharmaceutical dosage form. Spectrochim. Acta. 171: 369-375.
  • Wu, X., Wang, Y., Xue, J., Liu, J., Qin, J., Hong, Z., Du, Y. (2020). Solid phase drug-drug pharmaceutical cocrystal formed between pyrazinamide and diflunisal: Structural characterization based on terahertz/Raman spectroscopy combining with DFT calculation. Spectrochim. Acta. 234: 118625.
  • Fernandez-Pearles, M., Sanchez-Polo, M., Rozlen, M., Lopez-Ramon, M.V., Mota, A.J. (2020). Degradation of the diuretic hydrochlorothiazide by UV/solar radiation assisted oxidation processes. J. Enviorn. Manage. 257: 109973.
  • Ramesh, G., Prashanth, J., Naik, J.L., Reddy, B.V. (2018). Molecular structure, vibrational analysis, hyperpolarizability and NBO analysis of 3-methyl-picolinic acid using SQM calculations. Journal of Structural Chemistry. 59: 1022-1031.
  • Tamer, O., Tamer, S.A., Idil, O., Avci, D., Vural, H., Atalay, Y. (2018). Antimicrobial activities, DNA interactions, spectroscopic (FT-IR and UV-Vis) characteristics and DFT calculations for pyridine-2-carboxylic acid and its derivatives. J. Mol. Struct. 1152: 399-408.
  • Evans, G.W., Johnson, E.C. (1980). Growth stimulating effect of picolinic acid added to rat diets. Exp. Biol. Med. 165: 457-461.
  • Duque, G., Vidal, C., Li, W., Saedi, A.A., Khalil, M., Lim, C.K., Myers, D.E., Guillemin, G.J. (2020). Picolinic acid, a catabolite of tryptophan, has an anabolic effect on bone in vivo. Journal of Bone and Mineral Research. 35: 2275-2288.
  • Yang, C., Pan, Q., Jia, Q., Qi, W., Wi, H., Yang, S., Hu, N., Cao, B. (2020). Ultrathin holey reduced graphene oxide /Ni (picolinic acid)2 papers for flexible battery supercapactior hybrid devices. Chemical Engineering Journal. 408: 127302.
  • Zuniga, C., Oyarzun, D.P., Martin-Transaco, R., Yanez-S, M., Tello, A., Fuentealba, M., Cantero-Lopez, P., Arratia-Perez, R. (2017). Synthesis, characterization and relativistic DFT studies of fac-Re(CO)3(isonicotinic acid)2Cl complex. Chemical Physics Letters. 688: 66-73.
  • Zhang, J., Fang, J., Bo, Y., Xue, J., Liu, J., Hong, Z., Du, Y. (2020). Terahertz and Raman spectroscopic investigation of anti-tuberculosis drug-drug cocrystallization involving 4-aminosalicyclic acid and pyrazinamide. J. Mol. Struct. 1227: 129547.
  • Ugurlu, G. (2017). Molecular structures and electronic properties of isonicotinic acid (3-methoxy-4-hydroxy-benzylidene)-hydrazide: Ab initio and DFT calculation. AIP Conference Proceedings. 1815: 030017.
  • Vafaei, A., Ghaedi, A.M., Avazzadeh, Z., Kiarostami, V., Agarwal, S., Gupta, V.K. (2020). Removel of hydrochlorothiazide from molecular liquids using carbon nanotubes: radial basis function neural network modeling and culture algorithm optimization. Journal of Molecular Liquids. 324: 114766.
  • Srivasta, A.K., Srivastava, K., Yadav, P., Prasad, J. (2020). Synthesis, characterization, biological (in vitro) activity and electrochemical studies of mixed-ligand copper (II) and cobalt (II) complexes with picolinic acid and imdes. Chemical Data Collections. 100620.
  • Shohayeb, S.M., Mohamed, R.G., Moustafa, H., El-Medani, S.M. (2016). Synthesis, spectroscopic, DFT calculations and biological activity studies of ruthenium carbonyl complexes with 2-picolinic acid and a secondry ligand. J. Mol. Struct. 1119: 442-450.
  • Paz, A., Caceres, I., Fakhri, Y., Henriquez, Y., Araujo, M.L., Lubes, V., Hernandez, L. (2020). Binary and ternary nickel (II) complexes with picolinic acid and several amino acids. Physics and Chemistry of Liquids. 59(4): 622-631.
  • Hernandez, L., Carpio, E.D., Madden, W., Lubes, G., Perez, A., Rodriquez-Lugom, R.E., Landaeta, V.R., Araujo, M.L., Martinez, J.D., Lubes, V. (2018). Determination of stability constants of ternary copper(II) complexes formed with picolinic acid several amino acids. Physics and Chemsitry of Liquids. 58: 31-48.
  • Banjo, S., Olatunbosun, A.I. (2013). Quantum chemical calculations on molecular structures and solvents effect on 4-nitropicolinic and 4-methoxypicolinic acid. Int. J. Phys. Sci. 8(26): 1382-1392.
  • Gunasekaran, S., Ponnambalam, U., Muthu, S., Ponnusamy, S. (2004). Vibrational and normal coordinate analysis of prazinamide. Asian Journal of Chemistry. 16: 1513-1518.
  • Zhang, Y., Shi, W., Zhang, W, Mitchison, D. (2013). Mechanisms of prazinamide action and resistance. Microbiol. Spectr. 2(4): 1-12.
  • Hosna, S., Janzen, D.E., Mary, Y.S., Resmi, K.S., Thomas, R., Mohamed, R., Wajda, S. (2018). Molecular structure, spectroscopic, dielectric and thermal study, nonlinear optical properties, natural bond orbital, HOMO-LUMO and molecular docking analysis of (C6Cl2O4) (C10H14N2F).2H2O. Spectrochim. Acta. 204: 328-339.
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr. J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. (2010). Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT.
  • Bader, R.F.W., Nguyen-Dang, T.T. (1981). Quantum theory of atoms in molecules-Dalton revisited. In Advances in Quantum Chemistry. 14: 63-124. Academic Press.
  • Kumar, V.S., Mary, Y.S., Mary, Y.S., Serdarglu, G., Rad, A.S., Roxy, M.S., Manjula, P.S., Sarojini, B.K. (2020). Conformational analysis and DFT investigations of two triazole derivatives and its halogenated substitution by using spectroscopy, AIM and Molecular docking. Chemical Data Collections. 31: 100625.
  • Kumar, V.S., Mary, Y.S., Pradhan, K., Brahman, D., Mary, Y.S., Serdaroglu, G., Rad, A.S., Roxy, M.S. (2020). Conformational analysis and quantum descriptors of two new imidazole derivatives by experimental, DFT, AIM, molecular docking studies and adsorption activity on graphene. Heliyon 6: e05182.
  • https://bioinfo3d.cs.tau.ac.il/PatchDock/php.php
  • Duhovny, D., Nussinov, R., Wolfson, H.J. (2002). Efficient unbound docking of ridig molecules, In Gusfield et al., Ed. Proceedings of the second workshop on algorithms in Bioinformatics (WABI), Rome, Italy, Lecture notes in computer science, 2452, pp. 185-200, Springer Verlag.
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl. Acids Res. 33: W363-W367.
  • Yadav, R., Chaudhary, J.K., Jain, N., Chaudhary, P.K., Kharna, S., Dhamija, P., Sharma, A., Kumar, A., Handu, S. (2021). Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells. 10: 821.
  • https://www.rcsb.org/structure/6W63
  • Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R., Thronton, J.M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR. 8: 477-486.
  • Yadav, R., Imran, M., Dhamija, P., Chaurasia, D.K., Handu, S. (2020). Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2. J. Biomol. Struct. Dyn.
  • Mesecar, A.D. (2020). Structure of COVID-19 main protease bound to potent broad-spectrum non-covalent inhibitor X77, RCSB Protein Data Bank.
  • https://projects.biotec.tu-dresden.de/plip-web/plip/index
  • Salentin, S., Schreiber, S., Haupt, V.J., Adasme, M.F., Schroeder, M. (2015). PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Research 43(W1): W443-W447.
  • Abraham, M.J., Murtola, T., Schulz, R., Pall, S., Smith, J.C., Hess, B., Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1: 19-25.
  • Huang, J., MacKerell Jr., A.D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry. 34(25): 2135-2145.
  • Oliveira, B., Pereira, F., de Araujo, R., Ramos, M. (2006). The hydrogen bond strength: New proposals to evaluate the intermolecular interaction using DFT calculations and the AIM theory. Chem. Phys. Lett. 427: 181-184.
  • Padash, R., Esfahani, M.R., Rad, A.S. (2020). The computational quantum mechanical study of sulfamide drug adsorption onto X12Y12 fullerene-like nanocages: detailed DFT and QYAIM investigations. Journal of Biomolecular Structure and Dynamics.
  • Rad, A.S., Shahavi, M.H., Esfahani, M.R., Darvishina, N., Ahmadizadeh, S. (2020). Are nickel and titanium doped fullerenes suitable adsorbents for dopamine in an aqueous solution? Detailed DFT and AIM studies. J. Mol. Liq. 322: 114942.
  • Lu, T., Chen, F. (2012). Multiwfn: Multifunctional wavefunction analyzer. J. Comput. Chem. 33: 580-592.
  • Fowe, E.P., Therrien, B., Suss-Fink, G., Daul, C. (2008). Electron-structure calculations and bond order analysis using density functional theory of cationic dinuclear arene ruthenium complexes. Inorg. Chem. 47: 42-48.
  • Nkungli, N.K., Ghogomu, J.N. (2017). Theoretical analysis of the binding of iron(III) protoporphyrin IX to 4-methoxyacetophenone thiosemicarbazone via DFT-D3, MEP, QTAIM, NCI, ELF and LOL studies. J. Mol. Model. 23: 200.
  • Thomas, R., Mary, Y.S., Resmi, K.S., Narayana, B., Sarojini, B.K., Vijayakumar, G., Van Alsenoy, C. (2019). Two neoteric pyrazole compounds as potential anti-cancer agents:Synthesis, electronic structure, physico-chemical properties and docking analysis. J. Mol. Struct. 1181: 455-466.
  • Mary, Y.S., Miniyar, P.B., Mary, Y.S., Resmi, K.S., Panicker, C.Y., Armakovic, S., Armakovic, S.J., Thomas, R., Sureshkumar, B. (2018). Synthesis and spectroscopic study of three new oxadiazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential. J. Mol. Struct. 1173: 469-480.
  • Mary, Y.S., Mary, Y.S., Thomas, R., Narayana, B., Samshuddin, S., Sarojini, B.K., Armakovic, S., Armakovic, S.J., Pillai, G.G. (2019). Theoretical studies on the structure and various physico-chemical and biological properties of a terphenyl derivative with immense anti- protozoan activity. Polycyclic Aromatic Compounds. 41(4): 825-840.
  • Shafieyoon, P., Mehdipour, E., Mary, Y.S. (2019). Synthesis, characterization and biological investigation of glycine based sulfonamide derivative and its complex: Vibration assignment, HOMO-LUMO analysis, MEP and molecular docking. J. Mol. Struct. 1181: 244-252.
  • Zhang, T., Wei, X., Zuo, Y., Chao, J. (2019). An efficient measure to improve NLO performance bypont charg electric field. Optik. 182: 295-302.
  • Sheeja, S.R., Mangalam, N.A., Kurup, M.R.P., Mary, Y.S., Raju, K., Varghese, H.T., Panicker, C.Y. (2010). Vibrational spectroscopic studies and computational study of quinoline- 2-carbaldehyde benzoyl hydrazone. J. Mol. Struct. 973: 36-46.
  • Mary, Y.S., Panicker, C.Y., Sapnakumari, M., Narayana, B., Sarojini, B.K., Al-Saadi, A.A., Van Alsenoy, C., War, J.A., Fun, H.K. (2015). Molecular structure, FT-IR, Vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-[5-(4-Bromophenyl)-3- (4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone. Spectrochim Acta. 136: 473-482.
  • Sureshkumar, B., Mary, Y.S., Panicker, C.Y., Suma, S., Armakovic, S., Armakovic, S.J., Van Alsenoy, C., Narayna, B. (2020). Quinoline derivatives as possible lead compounds for anti-malarial drugs: Spectroscopic, DFT and MD study. Arabian Journal of Chemistry. 13: 632-648.
  • Glendening, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F. (1998). NBO Version 3.1, TCI, University of Wisconsin, Madison.
  • Kaur, M., Mary, Y.S., Varghese, H.T., Panicker, C.Y., Yathirajan, H.S., Siddegowda, M.S., Van Alsenoy, C. (2012). Vibrational spectroscopic, molecular structure, first hyperpolarizability and NBO studies of 4’-methylbiphenyl-2-carbonitrile. Spectrochim. Acta. 98: 91-99.
  • Roeges, N.P.G. (1994). A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, John Wiley and Sons Inc., New York.
  • Vennila, P., Govindaraju, M., Venkatesh, G., Kamal, C., Mary, Y.S., Panicker, C.Y., Kaya, S., Armakovic, S., Armakovic, S.J. (2018). A complete computational and spectroscopic study of 2-bromo-1,4-dichlorobenzene –A frequently used benzene derivative. J. Mol. Struct. 1151: 245-255.
  • Aswathy, V.V., Mary, Y.S., Jojo, P.J., Panicker, C.Y., Bielenica, A., Armakovic, S., Armakovic, S.J., Brzozka, P., Krukowski, S., Van Alsenoy, C. (2017). Investigation of spectroscopic, reactive, transport and docking properties of 1-(3,4-dichlorophenyl)-3-[3-(trifluoromethyl) phenyl]thiourea (ANF-6): Combined experimental and computational study. J. Mol. Struct. 1134: 668-680.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.