92
Views
2
CrossRef citations to date
0
Altmetric
Review

Current and Future Prospective of Lignin Derived Materials for the Removal of Toxic Dyes from Wastewater

ORCID Icon, , , &
Pages 635-660 | Received 30 Mar 2021, Accepted 02 Jul 2021, Published online: 19 Sep 2021

References

  • Petersen, L., Heynen, M. and Pellicciotti, F. (2016). Freshwater resources: past, present, future. International Encyclopedia of Geography: People, the Earth, Environment and Technology. 1-12.
  • Tara, N., Siddiqui, S.I., Rathi, G., Chaudhry, S.A. and Asiri, A.M. (2020). Nano-engineered adsorbent for the removal of dyes from water: A review. Current Analytical Chemistry. 16(1): 14-40.
  • Cai, Z., Sun, Y., Liu, W., Pan, F., Sun, P. and Fu, J. (2017).An overviewofnanomaterialsapplied for removing dyes from wastewater. Environmental Science and Pollution Research. 24(19): 15882-15904.
  • Ishak, S.A., Murshed, M.F., Md Akil, H., Ismail, N., Md Rasib, S.Z. and Al-Gheethi, A. A.S. (2020). The Application of Modified Natural Polymers in Toxicant Dye Compounds Wastewater: A Review. Water. 12(7): 2032.
  • Kim, B., Lee, Y.R., Kim, H.Y. and Ahn, W.S. (2018). Adsorption of volatile organic compounds over MIL-125-NH2. Polyhedron. 154: 343-349.
  • Wang, X., Jiang, C., Hou, B., Wang, Y., Hao, C. and Wu, J. (2018). Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere. 206: 587-596.
  • Ruan, W., Hu, J., Qi, J., Hou, Y., Zhou, C. and Wei, X. (2019). Removal of dyes from wastewater by nanomaterials: a review. Adv. Mater. Lett. 10(1): 09-20.
  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology. 97(9): 1061-1085.
  • Hao, M., Qiu, M., Yang, H., Hu, B. and Wang, X. (2020). Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of The Total Environment. 760: 143333.
  • Liu, X., Pang, H., Liu, X., Li, Q., Zhang, N., Mao, L., Qiu, M., Hu, B., Yang, H. and Wang, X. (2021). Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. The Innovation. 100076.
  • Yao, L., Yang, H., Chen, Z., Qiu, M., Hu, B. and Wang, X. (2020). Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere. 128576.
  • Zhang, X., Wang, J., Dong, X.X. and Lv, Y.K. (2020). Functionalizedmetal-organicframeworks for photocatalytic degradation of organic pollutants in environment. Chemosphere. 242: 125144.
  • Molinari, R., Grande, C., Drioli, E., Palmisano, L. and Schiavello, M. (2001). Photocatalytic membrane reactors for degradation of organic pollutants in water. Catalysis Today. 67(1-3): 273-279.
  • Tang, Q., Qian, Y., Yang, D., Qiu, X., Qin, Y. and Zhou, M. (2020). Lignin-Based Nanoparticles: A Review on Their Preparations and Applications. Polymers. 12(11): 2471.
  • Yu, O. and Kim, K.H. (2020). Lignin to Materials: A Focused Review on Recent Novel Lignin Applications. Applied Sciences. 10(13): 4626.
  • Fu, D., Mazza, G. and Tamaki, Y. (2010). Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. Journal of Agricultural and Food Chemistry. 58(5): 2915-2922.
  • Mishra, P.K. and Ekielski, A. (2019).Asimplemethodtosynthesizeligninnanoparticles.Colloids and Interfaces. 3(2): 52.
  • Rajendran, K., Drielak, E., Varma, V.S., Muthusamy, S. and Kumar, G. (2018). Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production-a review. Biomass Conversion and Biorefinery. 8(2): 471-483.
  • Jahirul, M.I., Rasul, M.G., Chowdhury, A.A. and Ashwath, N. (2012). Biofuels production through biomass pyrolysis-a technological review. Energies. 5(12): 4952-5001.
  • Rocha-Meneses, L., Raud, M., Orupõld, K. and Kikas, T. (2017). Second-generation bioethanol production: A review of strategies for waste valorisation. Agronomy Research. 15(3): 830-847.
  • Hernández-Beltrán, J.U., Lira, H.D., Omar, I., Cruz-Santos, M.M., Saucedo-Luevanos, A., Hernández-Terán, F. and Balagurusamy, N. (2019). Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities. Applied Sciences. 9(18): 3721.
  • Bajwa, D.S., Pourhashem, G., Ullah, A.H. and Bajwa, S.G. (2019). A concise review of current lignin production, applications, products and their environmental impact. Industrial Crops and Products. 139: 111526.
  • Richter, A.P., Bharti, B., Armstrong, H.B., Brown, J.S., Plemmons, D., Paunov, V.N., Stoyanov, S.D. and Velev, O.D. (2016). Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties. Langmuir. 32(25): 6468-6477.
  • Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A. and Jeelani, S. (2015). Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology. 4(1): 26-32.
  • Figueiredo, P., Lintinen, K., Hirvonen, J.T., Kostiainen, M.A. and Santos, H.A. (2018). Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science. 93: 233-269.
  • Lu, Y., Lu, Y.C., Hu, H.Q., Xie, F.J., Wei, X.Y. and Fan, X. (2017). Structural characterization of lignin and its degradation products with spectroscopic methods. Journal of Spectroscopy. 2017: 1-15.
  • Dessie, Y. and Admassie, S. (2014). Electrochemical study of conducting polymer/lignin composites. Orient. J. Chem. 29(4): 1359-1369.
  • Chakar, F.S. and Ragauskas, A.J. (2004). Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products. 20(2): 131-141.
  • Galkin, M.V. and Samec, J.S. (2016). Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem. 9(13): 1544-1558.
  • Kalogiannis, K.G., Matsakas, L., Lappas, A.A., Rova, U. and Christakopoulos, P. (2019). Aromatics from beechwood organosolv lignin through thermal and catalytic pyrolysis. Energies. 12(9): 1606.
  • Constant, S., Wienk, H.L., Frissen, A.E., de Peinder, P., Boelens, R., Van Es, D.S., Grisel, R.J.H., Weckhuysen, B.M., Huijgen, W.J.J., Gosselink, R.J.A. and Bruijnincx, P.C. (2016). New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chemistry. 18(9): 2651-2665.
  • Ľudmila, H., Michal, J., Andrea, Š. and Aleš, H. (2015). Lignin, potential products and their market value. Wood Res. 60(6): 973-986.
  • Jardim, J.M., Hart, P.W., Lucia, L. and Jameel, H. (2020). Insights into the Potential of Hardwood Kraft Lignin to Be a Green Platform Material for Emergence of the Biorefinery. Polymers. 12(8): 1795.
  • Dessbesell, L., Paleologou, M., Leitch, M., Pulkki, R. and Xu, C.C. (2020). Globalligninsupply overview and kraft lignin potential as an alternative for petroleum-based polymers. Renewable and Sustainable Energy Reviews. 123: 109768.
  • Wang, C., Kelley, S.S. and Venditti, R.A. (2016). Lignin-based thermoplastic materials. ChemSusChem. 9(8): 770-783.
  • Mandlekar, N., Cayla, A., Rault, F., Giraud, S., Salaün, F., Malucelli, G. and Guan, J.P. (2018). An overview on the use of lignin and its derivatives in fire retardant polymer systems. Lignin-Trends Appl. 207: 231.
  • Kumar, A., Kumar, J. and Bhaskar, T. (2020). Utilization of lignin: A sustainable and eco-friendly approach. Journal of the Energy Institute. 93(1): 235-271.
  • Espinoza-Acosta, J.L., Torres-Chávez, P.I., Carvajal-Millán, E., Ramírez-Wong, B., Bello-Pérez, L.A. and Montaño-Leyva, B. (2014). Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass. BioResources. 9(2): 3660-3687.
  • Berlin, A. and Balakshin, M. (2014). Industrial lignins: analysis, properties, and applications. Bioenergy Research: Advances and Applications. Edited by: Vijai K. Gupta, Maria G. Tuohy, Christian P. Kubicek, Jack Saddler & Feng Xu. 315-336.
  • Zhang, Z., Li, X., Liu, B., Zhao, Q. and Chen, G. (2016). Hexagonal microspindle of NH 2-MIL-101 (Fe) metal–organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene. RSC advances. 6(6): 4289-4295.
  • Nitsos, C., Stoklosa, R., Karnaouri, A., Voros, D., Lange, H., Hodge, D. and Christakopoulos, P. (2016). Isolation and characterization of organosolv and alkaline lignins from hardwood and softwood biomass. ACS Sustainable Chemistry & Engineering. 4(10): 5181-5193.
  • Shindhal, T., Rakholiya, P., Varjani, S., Pandey, A., Ngo, H.H., Guo, W., Ng, H.Y. and Taherzadeh, M.J. (2021). A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered. 12(1): 70-87.
  • Chaudhary, B. (2020). Chemistry of synthetic dyes: a review. J. Interdisc. Cycle Res. 12(11): 390-396.
  • Tkaczyk, A., Mitrowska, K. and Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Science of The Total Environment. 717: 137222.
  • Katheresan, V., Kansedo, J., Lau, S.Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering. 6: 4676-4697.
  • Lellis, B., Fávaro-Polonio, C.J., Pamphile, J.A., Polonio, J.C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation. 3: 275-290.
  • Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A. and El Harfi, A. (2019). Textile finishing dyes and their impact on aquatic environs. Heliyon. 5(11): e02711.
  • Piaskowski, K., Świderska-Dąbrowska, R. and Zarzycki, P.K. (2018). Dye removal from water and wastewater using various physical, chemical, and biological processes. Journal of AOAC International. 101(5): 1371-1384.
  • Bhatia, D., Sharma, N.R., Singh, J. and Kanwar, R.S. (2017). Biological methods for textile dye removal from wastewater: A Review. Critical Reviews in Environmental Science and Technology. 47(19): 1836-1876.
  • Hassaan, M.A., El Nemr, A. and Hassaan, A. (2017). Health and environmental impacts of dyes: mini review. American Journal of Environmental Science and Engineering. 1(3): 64-67.
  • Gita, S., Hussan, A. and Choudhury, T.G. (2017). Impact of textile dyes waste on aquatic environments and its treatment. Environ. Ecol. 35(3C): 2349-2353.
  • Chung, K.T. (2016). Azo Dyes and Human Health: A Review. Journal of Environmental of Science and Health part C Environment Carcinogenesis and Ecotoxicology Reviews. 34(4): 233-261.
  • Donkadokula, N.Y., Kola, A.K., Naz, I. and Saroj, D. (2020). A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Reviews in Environmental Science and Bio/technology. 19: 543-560.
  • Liu, X., Ma, R., Zhuang, L., Hu, B., Chen, J., Liu, X. and Wang, X. (2021). Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Critical Reviews in Environmental Science and Technology. 51(8): 751-790.
  • Wu, F., Wang, X., Hu, S., Hao, C., Gao, H. and Zhou, S. (2017). Solid-state preparation of CuO/ZnO nanocomposites for functional supercapacitor electrodes and photocatalysts with enhanced photocatalytic properties. International Journal of Hydrogen Energy. 42(51): 30098-30108.
  • Chen, X., Kuo, D.H., Lu, D., Hou, Y. and Kuo, Y.R. (2016). Synthesis and photocatalytic activity of mesoporous TiO2 nanoparticle using biological renewable resource of un-modified lignin as a template. Microporous and Mesoporous Materials. 223: 145-151.
  • Feng, F., Hao, C., Zhang, H., Xie, W., Wang, X. and Zhao, Y. (2015). Structural characterization and photocatalytic properties of ZnO by solid-state synthesis using aminated lignin template. Journal of Materials Science: Materials in Electronics. 26(9): 6704-6711.
  • Saikia, L., Bhuyan, D., Saikia, M., Malakar, B., Dutta, D.K. and Sengupta, P. (2015). Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Applied Catalysis A: General. 490: 42-49.
  • Hu, Y., Huang, Z., Zhou, L., Wang, D. and Li, G. (2014). Synthesis of nanoscale titania embedded in MIL-101 for the adsorption and degradation of volatile pollutants with thermal desorption gas chromatography and mass spectrometry detection. Journal of Separation Science. 37(12): 1482-1488.
  • Xue, Y., Wang, P., Wang, C. and Ao, Y. (2018). Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: environmental factors, mechanisms and degradation pathways. Chemosphere. 203: 497-505.
  • Zazouli, M.A., Ghanbari, F., Yousefi, M. and Madihi-Bidgoli, S. (2017). Photocatalytic degradation of food dye by Fe3O4-TiO2 nanoparticles in presence of peroxymonosulfate: The effect of UV sources. Journal of Environmental Chemical Engineering. 5(3): 2459-2468.
  • Oladipo, A.A., Vaziri, R. and Abureesh, M.A. (2018). Highly robust AgIO3/MIL-53 (Fe) nanohybrid composites for degradation of organophosphorus pesticides in single and binary systems: Application of artificial neural networks modelling. Journal of the Taiwan Institute of Chemical Engineers. 83: 133-142.
  • Tian, L.F., Hu, Y.Z., Guo, Y.R. and Pan, Q.J. (2018). Dual effect of lignin amine on fabrication of magnetic Fe3O4/C/ZnO nanocomposite in situ and photocatalytic property. Ceramics International. 44(12): 14480-14486.
  • Wu, X.Y., Qi, H.X., Ning, J.J., Wang, J.F., Ren, Z.G. and Lang, J.P. (2015). One silver (I)/tetraphosphine coordination polymer showing good catalytic performance in the photodegradation of nitroaromatics in aqueous solution. Applied Catalysis B: Environmental. 168: 98-104.
  • Wang, C., Xue, Y., Wang, P. and Ao, Y. (2018). Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by AgI/UiO-66 composite under visible light irradiation. Journal of Alloys and Compounds. 748: 314-322.
  • Ajmal, A., Majeed, I., Malik, R.N., Idriss, H. and Nadeem, M.A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. Rsc Advances. 4(70): 37003-37026.
  • Khan, A., Colmenares, J.C. and Gläser, R. (2018). Lignin-Based Composite Materials for Photocatalysis and Photovoltaics. Topics in Current Chemistry. 376(3): 1-31.
  • Dai, Z., Ren, P., Cao, Q., Gao, X., He, W., Xiao, Y., Jin, Y. and Ren, F. (2020). Synthesis of TiO2@ lignin based carbon nanofibers composite materials with highly efficient photocatalytic to methylene blue dye. Journal of Polymer Research. 27(5): 1-12.
  • Al-Ghouti, M.A. and Da'ana, D.A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials. 393: 122383.
  • Madala, S., Nadavala, S.K., Vudagandla, S., Boddu, V.M. and Abburi, K. (2017). Equilibrium, kinetics and thermodynamics of Cadmium (II) biosorption on to composite chitosan biosorbent. Arabian Journal of Chemistry. 10: S1883-S1893.
  • Yao, Z.Y., Qi, J.H. and Wang, L.H. (2010). Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell. Journal of Hazardous Materials. 174(1-3): 137-143.
  • Masilompane, T.M., Chaukura, N., Mishra, S.B. and Mishra, A.K. (2018). Chitosanlignin-titania nanocomposites for the removal of brilliant black dye from aqueous solution. International Journal of Biological Macromolecules. 120: 1659-1666.
  • Azimvand, J. and Didehban, K. (2018). Preparation and Characterization of Nano-lignin Biomaterial to Remove Basic Red 2 dye from aqueous solutions. Pollution. 4(3): 395-415.
  • Kumar, A., Kumar, V. and Singh, J. (2019). Role of Fungi in the Removal of Heavy Metals and Dyes from Wastewater by Biosorption Processes. In Recent Advancement in White Biotechnology Through Fungi. pp. 397-418. Springer, Cham.
  • Edet, U.A. and Ifelebuegu, A.O. (2020). Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes, 8(6): 665.
  • Nasehi, P., Moghaddam, M.S., Abbaspour, S.F. and Karachi, N. (2020). Preparation and characterization of a novel Mn-Fe2O4 nanoparticle loaded on activated carbon adsorbent for kinetic, thermodynamic and isotherm surveys of aluminum ion adsorption. Separation Science and Technology. 55(6): 1078-1088.
  • Balarak, D., Mostafapour, F.K., Azarpira, H. and Joghataei, A. (2017). Langmuir, Freundlich, Temkin and Dubinin-radushkevich isotherms studies of equilibrium sorption of ampicilin unto montmorillonite nanoparticles. Journal of Pharmaceutical Research International. 20(2): 1-9.
  • Araújo, C.S., Almeida, I.L., Rezende, H.C., Marcionilio, S.M., Léon, J.J. and de Matos, T.N. (2018). Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal. 137: 348-354.
  • Joshi, S., Garg, V.K., Kataria, N. and Kadirvelu, K. (2019). Applications of Fe3O4@ AC nanoparticles for dye removal from simulated wastewater. Chemosphere. 236: 124280.
  • Weir, E., Lawlor, A., Whelan, A. and Regan, F. (2008). The use of nanoparticles in anti-microbial materials and their characterization. Analyst. 133(7): 835-845.
  • Azimvand, J., Didehban, K. and Mirshokraie, S.A. (2018). Safranin-O removal from aqueous solutions using lignin nanoparticle-g-polyacrylic acid adsorbent: Synthesis, properties, and application. Adsorption Science & Technology. 36(7-8): 1422-1440.
  • Muneesawang, P. and Sirisathitkul, C. (2015). Size measurement of nanoparticle assembly using multilevel segmented TEM images. Journal of Nanomaterials. 16(1): 58.
  • Zhai, R., Hu, J., Chen, X., Xu, Z., Wen, Z. and Jin, M. (2020). Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal. Bioresource Technology. 315: 123846.
  • Rukari, T.G. and Alhat, B.R. (2013). Transmission electron microscopy-an overview. International Research Journal for Inventions in Pharmaceutical Sciences. 1(2): 1-7.
  • Naderi, M. (2015). Surface Area: Brunauer-Emmett-Teller (BET). In Progress in filtration and separation. pp. 585-608. Academic Press.
  • Campos, E.A., Stockler Pinto, D.V.B., Oliveira, J.D., Mattos, E.D.C. and Dutra, R.dC.L. (2015). Synthesis, characterization and applications of iron oxide nanoparticles-a short review. J. Aerosp. Technol. Manage. 7: 267-276.
  • Modena, M.M., Rühle, B., Burg, T.P. and Wuttke, S. (2019). Nanoparticle characterization: what to measure?. Advanced Materials. 31(32): 1901556.
  • Titus, D., Samuel, E.J.J. and Roopan, S.M. (2019). Nanoparticle characterization techniques. In Green Synthesis, Characterization and Applications of Nanoparticles. pp. 303-319. Elsevier.
  • Patra, J.K. and Baek, K.H. (2014). Green nanobiotechnology: factors affecting synthesis and characterization techniques. Journal of Nanomaterials. 2014: 21.
  • Chauhan, R.P., Gupta, C. and Prakash, D. (2012). Methodological advancements in green nanotechnologyandtheirapplicationsinbiologicalsynthesisofherbalnanoparticles. International Journal of Bioassays. 1(7): 6-10.
  • Mourdikoudis, S., Pallares, R.M. and Thanh, N.T. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 10(27): 12871-12934.
  • Tiede, K., Boxall, A.B., Tear, S.P., Lewis, J., David, H. and Hassellöv, M. (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Additives and Contaminants. 25(7): 795-821.
  • Gupta, V., Gupta, A.R. and Kant, V. (2013). Synthesis, characterization and biomedical application of nanoparticles. Science International. 1(5): 167-174.
  • Jiang, C., Wang, X., Qin, D., Da, W., Hou, B., Hao, C. and Wu, J. (2019). Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes. Journal of Hazardous Materials. 369: 50-61.
  • Sohni, S., Hashim, R., Nidaullah, H., Lamaming, J. and Sulaiman, O. (2019). Chitosan/ nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions. International Journal of Biological Macromolecules. 132: 1304-1317.
  • Hethnawi, A., Nassar, N.N., Manasrah, A.D. and Vitale, G. (2017). Polyethylenimine-functionalized pyroxene nanoparticles embedded on Diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column. Chemical Engineering Journal. 320: 389-404.
  • de Araújo Padilha, C.E., da Costa Nogueira, C., de Santana Souza, D.F., de Oliveira, J.A. and dos Santos, E.S. (2020). Organosolv lignin/Fe3O4 nanoparticles applied as a β-glucosidase immobilization support and adsorbent for textile dye removal. Industrial Crops and Products. 146: 112167.
  • Ma, Y.Z., Zheng, D.F., Mo, Z.Y., Dong, R.J. and Qiu, X.Q. (2018). Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 559: 226-234.
  • Tang, Y., Zeng, Y., Hu, T., Zhou, Q. and Peng, Y. (2016). Preparation of lignin sulfonate-based mesoporous materials for adsorbing malachite green from aqueous solution. Journal of Environmental Chemical Engineering. 4(3): 2900-2910.
  • Yu, C., Wang, F., Zhang, C., Fu, S. and Lucia, L.A. (2016). The synthesis and absorption dynamics of a lignin-based hydrogel for remediation of cationic dye-contaminated effluent. Reactive and Functional Polymers. 106: 137-142.
  • Li, J., Li, H., Yuan, Z., Fang, J., Chang, L., Zhang, H. and Li, C. (2019). Role of sulfonation in lignin-based material for adsorption removal of cationic dyes. International Journal of Biological Macromolecules. 135: 1171-1181.
  • Li, X., He, Y., Sui, H. and He, L. (2018). One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes. Nanomaterials. 8(3): 162.
  • Meng, X., Scheidemantle, B., Li, M., Wang, Y.Y., Zhao, X., Toro-González, M., Singh, P., Pu, Y., Wyman, C.E., Ozcan, S., Cai, C.M. and Ragauskas, A.J. (2020). Synthesis, characterization, and utilization of a lignin-based adsorbent for effective removal of azo dye from aqueous solution. ACS Omega. 5(6): 2865-2877.
  • Hu, L., Guang, C., Liu, Y., Su, Z., Gong, S., Yao, Y. and Wang, Y. (2020). Adsorption behavior of dyes from an aqueous solution onto composite magnetic lignin adsorbent. Chemosphere. 246: 125757.
  • Song, X., Chen, F. and Liu, S. (2016). A lignin-containing hemicellulose-based hydrogel and its adsorption behavior. BioResources. 11(3): 6378-6392.
  • Zhai, R., Wan, Y., Liu, L., Zhang, X., Wang, W., Liu, J. and Zhang, B. (2012). Hierarchical MnO2 nanostructures: synthesis and their application in water treatment. Water Science and Technology. 65(6): 1054-1059.
  • Samaka, I.S. (2014). Removal of basic Red 2 from industrial effluents using natural Iraqi material. Civil and Environmental Research. 6(7): 138-148.
  • Kayode, G.A., Amoakoh-Coleman, M., Agyepong, I.A., Ansah, E., Grobbee, D.E. and Klipstein-Grobusch, K. (2014). Contextual risk factors for low birth weight: a multilevel analysis. PloS One. 9(10): e109333.
  • Parvizi, M.R. and Karachi, N. (2017). Isotherm and Kinetic Study of Disulfin Blue and Methyl Orange dyes by adsorption onto by Titanium dioxide-NPs loaded onto Activated Carbon: Experimental Design. Oriental Journal of Chemistry. 33(5): 2559-2565.
  • Kundu, S., Chowdhury, I.H. and Naskar, M.K. (2017). Synthesis of hexagonal shaped nanoporous carbon for efficient adsorption of methyl orange dye. Journal of Molecular Liquids. 234: 417-423.
  • Zhang, W., Yan, H., Li, H., Jiang, Z., Dong, L., Kan, X., Yang, H., Li, A. and Cheng, R. (2011). Removal of dyes from aqueous solutions by straw based adsorbents: Batch and column studies. Chemical Engineering Journal. 168(3): 1120-1127.
  • Jeon, Y.S., Lei, J. and Kim, J.H. (2008). Dye adsorption characteristics of alginate/polyaspartate hydrogels. Journal of Industrial and Engineering Chemistry. 14(6): 726-731.
  • Wang, L. and Wang, A. (2007). Adsorption characteristics of Congo Red onto the chitosan/ montmorillonite nanocomposite. Journal of Hazardous Materials. 147(3): 979-985.
  • Vahidhabanu, S., Adeogun, A.I. and Babu, B.R. (2019). Biopolymer-grafted, magnetically tuned halloysite nanotubes as efficient and recyclable spongelike adsorbents for anionic azo dye removal. ACS Omega. 4(1): 2425-2436.
  • Tagami, A., Gioia, C., Lauberts, M., Budnyak, T., Moriana, R., Lindström, M.E. and Sevastyanova, O. (2019). Solvent fractionation of softwood and hardwood kraft lignins for more efficient uses: Compositional, structural, thermal, antioxidant and adsorption properties. Industrial Crops and Products. 129: 123-134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.