10
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and biological evaluation of new 2-Amino-7-hydroxy-8-methyl-4-aryl-4H-chromene-3-carbonitrile derivatives

, , , , &
Pages 352-368 | Received 12 Dec 2023, Accepted 07 May 2024, Published online: 20 May 2024

References

  • Mancuso, G., Midiri, A., Gerace, E., Marra, M., Zummo, S., Biondo, C. (2023). Urinary Tract Infections: The Current Scenario and Future Prospects. Pathogens. 12(4): 623. doi: 10.3390/pathogens12040623
  • Al-Lawati, H., Blair, B.M., Larnard, J. (2024). Urinary Tract Infections: Core Curriculum 2024. Americal Journal of Kidney Diseases. 83(1): 90-100. doi: 10.1053/j.ajkd.2023.08.009
  • Ozturk, R., Murt, A. (2020). Epidemiology of urological infections: a global burden. World J Urol. 38(11): 2669-79. doi: 10.1007/s00345-019-03071-4
  • Werneburg, G.T. (2022). Catheter-Associated Urinary Tract Infections: Current Challenges and Future Prospects. Res. Rep. Urol. 14: 109-133.
  • Chuang, L., Paul, A.T. (2021). Catheter-associated urinary tract infection. Journal of Infection and Chemotherapy. 27(10): 1400-1406. doi: 10.1016/j.jiac.2021.07.022
  • Hussein, E.I., Al-Batayneh, K., Masadeh, M.M., Dahadhah, F.W., Al-Zoubi, M.S., Aljabali, A.A., Alzoubi, K.H. (2020). Asses-sment of Pathogenic Potential, Virulent Genes Profile, and Antibiotic Susceptibility of Proteus mirabilis from Urinary Tract Infection. Int. J. Microbiol. 2020: 1-5. doi: 10.1155/2020/1231807
  • Huang, Y.Z., Yang, T., Wang, G., Li, p., Yang, B., Li, J. (2021). Pathogenesis of Proteus mirabilis in Catheter-Associated Urinary Tract Infections. Urologia Int. 105(5-6): 354-36. doi: 10.1159/000514097
  • Herout, R., Khoddami, S., Moskalev, I., Reicherz, A., Chew, B., Armbruster, C., Lange, D. (2023). Role of Bacterial Surface Components in the Pathogenicity of Proteus mirabilis in a Murine Model of Catheter-Associated Urinary Tract Infection. Pathogens. 12(4): 509. doi: 10.3390/pathogens12040509
  • Zagaglia, C., Ammendolia, M.G., Maurizi, L., Nicoletti, M., Longhi, C. (2022). Urinary Tract Infections Caused by Uropathogenic Escherichia coli Strains-New Strategies for an Old Pathogen. Microorganisms. 10(7): 1425. doi: 10.3390/microorganisms10071425
  • Schaffer, J.N., Pearson, M.M. (2015). Proteus mirabilis and Urinary Tract Infections. Microbiol Spectr. 3(5): 10. doi: 10.1128/microbiolspec.UTI-0017-2013
  • Liu, L., Dong, Z., Ai, S., Chen, S., Dong, M., Li, Q., Liu, Z.Z.H., Ma, Z.Z.X., Hu, Y., Ren, Z., Fu, H., Shu, G., Qiu, X., Peng, G. (2023). Virulence-related factors and antimicrobial resistance in Proteus mirabilis isolated from domestic and stray dogs. Front. Microbiol. 14: 1141418. doi: 10.3389/fmicb.2023.1141418
  • Girlich, D., Bonnin, R.A., Dortet, L., Naas, T. (2020). Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Front. Microbiol. 11: 256. doi: 10.3389/fmicb.2020.00256
  • Algammal, A.M., Hashem, H.R., Alfifi, K.J., Hetta, H.F., Sheraba, N.S., Ramadan, H., Tarabili, R. (2021). atpD gene sequencing, multidrug resistance traits, virulence-determi-nants and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis. Sci. Rep. 11(1): 9476. doi: 10.1038/s41598-021-88861-w
  • Rando, E., Giovannenze, F., Murri, R., Sacco, E. (2022). A review of recent advances in the treatment of adults with complicated urinary tract infection. Expert Rev. Clin. Pharmacol. 15(9): 1053-1066. doi: 10.1080/17512433.2022.2121703
  • Armbruster, C.E., Mobley, H.L.T., Pearson, M.M. (2018). Pathogenesis of Proteus mirabilis Infection. EcoSal Plus. 8(1): 1128. doi: 10.1128/ecosalplus.esp-0009-2017
  • Nwobodo, C.D., Ugwu, M.C., Anie, O.C., Al-Ouqaili, M.T.S., Ikem, C.J., Chigozie, V.U., Saki, M. (2022). Antibiotic resistance: The chall-enges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 36(9): e24655. doi: 10.1002/jcla.24655
  • Taylor, P.W., Stapleton, P.D., Luzio, J.P. (2002). New ways to treat bacterial infections. Drug Discovery Today. 7(21): 1086-1091. doi: 10.1016/S1359-6446(02)02498-4
  • Durgadevi, R., Ravi, A.V., Alexpandi, R., Swetha, T.K., Abirami, G., Vishnu, S., Pandian, S.K. (2019). Virulence targeted inhibitory effect of linalool against the exclusive uropathogen Proteus mirabilis. Biofouling. 35(5): 508-525. doi: 10.1080/08927014.2019.1619704
  • Hauser, A.R., Mecsas, J., Moir, D.T. (2016). Beyond antibiotics: new therapeutic approaches for bacterial infections. Clin. Infect. Dis. 63(1): 89-95. doi: 10.1093/cid/ciw200
  • Raj, V., Lee, J. (2020). 2H/4H-Chromenes-A Versatile Biologically Attractive Scaffold. Front. Chem. 8: 623. doi: 10.3389/fchem.2020.00623
  • Dige, N., Mahajan, P., Raja, H., Hassan, M., Vanjare, B., Hong, H., Lee, K., Jalifah latip, J., Seo, S.-Y. (2020). Synthesis and characterization of new 4H-chromene-3-carboxylates ensuring potent elastase inhibition activity along with their molecular docking and chemoinformatics properties. Biorganic. Chemistry. 100: 103906.
  • Ansari, Md.Y., Swarnkar, S., Kumar, A. (2024). One-pot construction of highly functionalized 4H-chromenes using K-10 montmorillonite in aqueous medium. New journal of chemistry. 48(5): 1992-1997. doi: 10.1039/D3NJ04619B
  • Ghafuri, H., Zargari, M., Emami, A. (2023). Green and Eco-Friendly Synthesis of 2-Amino-3-Cyano-4H-Chromene Derivatives via Eggshell/Fe3O4 as a Biodegradable Polymer Matrix Nano-composite. Asian Journal of Green Chemistry. 7(1): 54-59.
  • Shukla, P.M., Pratap, A., Maji, B. (2022). N-Heterocyclic carbene-catalysed homoenolate addition reaction to 3-cyano-2-imino-2H-chromenes: synthesis of C4-functionalized 2-amino-3-cyano-4H-chromene. Org. Biomol. Chem. 20(42): 8203-8208. doi: 10.1039/D2OB01447E
  • Chatterjee, R., Bhukta, S., Dandela, R. (2021). Ionic liquid-assisted synthesis of 2-amino-3-cyano-4H-chromenes: A sustainable overview. J Heterocyclic Chem. 59(4): 633-654. doi: 10.1002/jhet.4417
  • Fatma Boukattaya, Amal Daoud, Fabien Boeda, Morwenna S.M. Pearson-Long, Neji Gharsallah, Adel Kadri, Philippe Bertus, Houcine Ammar. (2019). Synthesis and Biological Evaluation of 3-cyano-4H-chromene Derivatives Bearing Carbamate Functionality. Medicinal chemistry. 15(3): 257-264. doi: 10.2174/1573406414666181009124449
  • Feliciano, A., Gomez-Garcia, O., Escalante, C.H., Rodríguez-Hernandez, M.A., Vargas-Fuentes, M., Andrade-Pavon, D., Villa-Tanaca, L., Alvarez-Toledano, C., Ramirez-Apan, M.T., Vazquez, M.A., Tamariz, J., Delgado, F. (2021). Three-Component Synthesis of 2-Amino-3-cyano-4H-chromenes, In Silico Analysis of Their Pharmacological Profile, and In Vitro Anticancer and Antifungal Testing Pharmaceuticals. 14(11): 1110.
  • Leila Dinparast, Salar Hemmati, AliAkbar Alizadeh, Gokhan Zengin, HosseinSamadi Kafil, Mir Babak Bahadori, Siavoush Dastmalchi. (2020). An efficient, catalyst-free, one-pot synthesis of 4H-chromene derivatives and investigating their biological activities and mode of interactions using molecular docking studies. Journal of Molecular Structure. 1203: 127426. doi: 10.1016/j.molstruc.2019.127426
  • Zhang W. H, Chen S, Liu X. L, Bing-Lin N, Liu X. W, Zhou Y. (2020). Study on Antitumor Activities of the Chrysin-Chromene-Spirooxindole on Lewis Lung Carcinoma C57BL/6 Mice in vivo. Bioorg. Med. Chem. Lett. 30(17): 127410. doi: 10.1016/j.bmcl.2020.127410
  • de Abrantes, P.G., de Abrantes, P.G., Silva, D.A.D.S., Magalhaes, R.R., da Silva, P.B.N., Militao, G.C.G., de Menezes, R.P.B., Scotti, L., Scotti, M.T., Vale, J.A. (2023). Synthesis of 2-amino-4H-chromenes catalyst-free via sequential Knoevenagel-Michael reaction and evaluation of biological activity in tumor cells. Medicinal Chemistry Research. 32(10): 2234-2244. doi: 10.1007/s00044-023-03131-w
  • Asgari, F., Mahinpour, R., Moradi, L., Haghighipour, N. (2020). The Chromene Deri-vative 4-Clpgc Inhibits Cell Proliferation and Induces Apoptosis in the K562 Cell Line. J. Cell Commun. Signal. 14(1): 77-91. doi: 10.1007/s12079-019-00530-w
  • Afifi, T.H., Okasha, R.M., Alsherif, H., Ahmed, H., Aziz, A.A. (2017). Design, Synthesis, and Docking Studies of 4H-Chromene and Chromene Based Azo Chromophores: A Novel Series of Potent Antimicrobial and Anticancer Agents. Current Organic Synthesis. 14(7): 1036-1051. doi: 10.2174/1570179414666170519150520
  • Abu-Hashem, A.A., Hakami, O., El-Shazly, M., El-Nashar, H.A.S., Yousif, M.N.M. (2023). Synthesis and Anticancer Activity of Novel Chromene Derivatives, Chromeno[2,3-d] [1,3] Oxazines, and Chromeno[2,3-d] Pyrimidines. Medicinal Chemistry. 19(6): 578-585. doi: 10.2174/1573406419666221226094133
  • Alneyadi, Z.N., Nizami, H.E., Aburawi, S., Hisaindee, M., Nawaz, S., Attoub, G., Ramadan, N., Benhalilou, M., Azzani, Y., Elmahi, A., Almeqbali, K., Muhammad, A., Eid, R., Vijayan, R., Iratni. (2023). Synthesis of New Chromene Derivatives Targeting Triple-Negative Breast Cancer Cells. Cancers. 15(10): 2682. doi: 10.3390/cancers15102682
  • Bhuvaneswari, K., Sivaguru, P., Lalitha, A. (2020). Synthesis, anticancer evaluation and docking studies of some novel azo chromene derivatives. J. Chin. Chem. Soc. 67(10): 1877-1886. doi: 10.1002/jccs.201900481
  • Shaik, M.S., Nadiveedhi, M.R., Gundluru, M., Narreddy, A.K.R., Thathireddy, K.R., Ramakrishna, R., Cirandur, S.R. (2021). 2-Amino-3-cyano-4H-chromene-4-ylphosphonates as potential antiviral agents: Synthesis, in ovo and in silico approach. Journal of Heterocyclic Chemistry. 58(1): 137-152. doi: 10.1002/jhet.4154
  • Khare, S.P., Deshmukh, T.R., Sangshetti, J.N., Krishna, V.S., Sriram, D. (2018). Design, Synthesis and Molecular Docking Studies of Novel Triazole-Chromene Conjugates as Anti-tubercular, Antioxidant and Antifungal Agents. Chemistry Select. 3(46): 13113-13122.
  • Kang, Y., Mei, Y., Du, Y., Jin, Z. (2003). Total synthesis of the highly potent anti-HIV natural product daurichromenic acid along with its two chromene derivatives, rhododaurichromanic acids A and B. Organic Letters. 5(23): 4481-4484. doi: 10.1021/ol030109m
  • Katiyar, M.K., Dhakad, G.K., Shivani, Arora, S., Bhagat, S., Arora, T., Kumar, R. (2022). Synthetic strategies and pharmacological activities of chromene and its derivatives: An overview. Journal of Molecular Structure. 1263(2): 133012. doi: 10.1016/j.molstruc.2022.133012
  • Sul, R.D., Humbe, O.Y., Shelar, A.V., Patil, R.H., Khedkar, V.M., Kale, B.B., Nikam, L.K. (2024). Synthesis, Biological and Molecular Docking Studies of New Polysubstituted 2-Amino-3-Cyano-4H-Chromene Derivatives. Chemistry-Select. 9(17): e202304957.
  • Coker, C., Poore, C.A., Li, X., Mobley, H.L. (2000). Pathogenesis of Proteus mirabilis uri-nary tract infection. Microbes Infect. 2(12): 1497-1505. doi: 10.1016/S1286-4579(00)01304-6
  • Nzakizwanayo, J., Scavone, P., Jamshidi, S., Hawthorne, J.A., Pelling, H., Dedi, C., Salvage, J.P., Hind, C.K., Guppy, F.M., Barnes, L.M., Patel, B.A., Rahman, K.M., Sutton, M.J., Jones, B.V. (2017). Fluoxetine and thioridazine inhibit efflux and attenuate crystalline biofilm formation by Proteus mirabilis. Scientific Report 7(1): 12222. doi: 10.1038/s41598-017-12445-w
  • Aygula, A., Ozturkb, I., Cillic, F.F., Ermertcand, S. (2018). Quercetin inhibits swarming motility and activates biofilm pro-duction of Proteus mirabilis possibly by interacting with central regulators, metabolic status or active pump proteins. Phytomedicine. 57: 65-71. doi: 10.1016/j.phymed.2018.12.014
  • Su, S., Yin, P., Li, J., Chen, G., Wang, Y., Qu, D., Li, Z., Xue, X., Luo, X., Li, M. (2019). In vitro and in vivo anti-biofilm activity of pyran derivative against Staphylococcus aureus and Pseudomonas aeruginosa. Journal of Infection and Public Health.13(5): 791-799. doi: 10.1016/j.jiph.2019.10.010
  • OMay, G.A., Jacobsen, S.M., Longwell, M., Stoodley, P., Mobley, H.L.T., Shirtliff, M.E. (2009). The high-affinity phosphate transporter Pst in Proteus mirabilis HI4320 and its importance in biofilm formation. Microbiology (Reading). 155(5): 1523-1535. doi: 10.1099/mic.0.026500-0
  • Jacobsen, S.M., Lane, M.C., Harro, J.M., Shirtliff, M.E., Mobley, H.L.T. (2008). The high-affinity phosphate transporter Pst is a virulence factor for Proteus mirabilis during complicated urinary tract infection. FEMS Immunology & Medical Microbiology. 52(2): 180-193. doi: 10.1111/j.1574-695X.2007.00358.x
  • Lamarche, M.G., Dozois, C.M., Daigle, F., Caza, R., Curtiss, M., Dubreuil, J.D., Harel, J. (2005). Inactivation of the pst system reduces the virulence of an avian pathogenic Escherichia coli O78 strain.Infect Immun.73(7): 4138-45. doi: 10.1128/IAI.73.7.4138-4145.2005
  • Peirs, P., Lefevre, P., Boarbi, S., Wang, X.M., Denis, O., Braibant, M., Pethe, K., Locht, C., Huygen, K., Content, J. (2005). Mycobacterium tuberculosis with disruption in genes encoding the phosphate binding proteins PstS1 and PstS2 is deficient in phosphate uptake and demonstrates reduced in vivo virulence. Infect Immun. 73(3): 1898-902. doi: 10.1128/IAI.73.3.1898-1902.2005
  • Monds, R.D., Silby, M.W., Mahanty, H.K. (2001). Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147-2.Mol Microbiol. 42(2): 415-26. doi: 10.1046/j.1365-2958.2001.02641.x
  • Soualhine, H., Brochu, V., Menard, F., Papadopoulou, B., Weiss, K., Bergeron, M.G., Legare, D., Drummelsmith, J., Ouellette. M. (2005). A proteomic analysis of penicillin resistance in Streptococcus pneumoniae revealsa novel role for PstS, a subunit of the phosphate ABC transporter. Mol Microbiol. 58(5): 1430-40. doi: 10.1111/j.1365-2958.2005.04914.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.