41
Views
0
CrossRef citations to date
0
Altmetric
Articles

Streptomyces spp from Black Pepper Rhizosphere: A Boundless Reservoir of Antimicrobial and Growth Promoting Metabolites

, , &
Pages 1-23 | Received 12 Oct 2017, Accepted 14 Nov 2018, Published online: 11 Mar 2019

References

  • Arroyo-López, F.N., Bautista-Gallego, J., Romero-Gil, V., Rodriguez-Gómez, F., Grrido- Fernández, A. (2012). Growth/no growth interfaces of table olive related yeasts for natamycin, citric acid and sodium chloride. Int. J. Food. Microbiol. 155: 257–262. doi: 10.1016/j.ijfoodmicro.2012.02.007
  • Baldwin, H.A., Rassnick, S., Rivier, J., Koob, G.F, Britton, K.T. (1991). CRF antagonist reverses the “anxiogenic” response to ethanol withdrawal in the rat. Psychopharmacol. 103: 227-232. doi: 10.1007/BF02244208
  • Ballav, S., Kerkar, S., Thomas, S., Augustine, N. (2015). Halophilic and halotolerant actino- mycetes from a marine saltern of Goa, India producing anti-bacterial metabolites. J. Biosci. Bioeng. 119: 323–330. doi: 10.1016/j.jbiosc.2014.08.017
  • Bérdy, J. (2005). Bioactive microbial metabolites. J. Antibiot. 58: 1–26. doi: 10.1038/ja.2005.1
  • Bieber, B., Nuske, J., Ritzau, M., Grafe, U. (1998). Alnumycin a new naphthoquinone anti- biotic produced by an endophytic Streptomyces sp. J. Antibiot. 51: 381–382. doi: 10.7164/antibiotics.51.381
  • Bierhalz, A.C.K., Silva, M.A., Kieckbusch, T.G. (2012). Natamycin release from alginate/ pectin films for food packaging applications. J. Food Eng. 110: 18–25. doi: 10.1016/j.jfoodeng.2011.12.016
  • Bush, K., Macielag, M. (2000). New approaches in the treatment of bacterial infections. Curr. Opin. Chem. Biol. 4: 433–439. doi: 10.1016/S1367-5931(00)00106-X
  • Cai, F., Yu, G., Wang, P., Wei, Z., Fu, L., Shen, Q., Chen, W. (2013). Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol. Biochem. 73: 106–113. doi: 10.1016/j.plaphy.2013.08.011
  • Castillo, U.F., Strobel, G.A., Ford, E.J., Hess, W.M., Porter, H., Jensen, J.B., Albert, H., Robison, R., Condron, M.A.M., Teplow, D.B., Stevens, D., Yaver, D. (2002). Munum- bicins, wide-spectrum antibiotics produced by Streptomyces NRRL30562, endophytic on Kennedia nigriscans. Microbiology. 148: 2675–2685. doi: 10.1099/00221287-148-9-2675
  • Chen, G-Q., Lu, F-P., Du, L-X. (2008). Natamycin production by Streptomyces gilvosporeus based on statistical optimization. J. Agric. Food Chem. 56: 5057–5061. doi: 10.1021/jf800479u
  • Chen, Y.Y., Chen, P.C., Tsay T.T. (2016). The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici. Biol. Control. 98: 34–42. doi: 10.1016/j.biocontrol.2016.02.011
  • Cheng, J.L., Zhou, Y., Zhao, J.H., Zhang, C., Lin, F.C. (2010). Synthesis and antifungal activity of trichodermin derivatives. Chinese Chemical Letters. 21: 1037–1040. doi: 10.1016/j.cclet.2010.04.033
  • Christensen, E.S., Buch, A. (1982). Vaginal Candida albicans treated with three different concentrations of natamycin (Pimafucin) for 6 days. Acta Obstet Gynecol Scand. 61: 325–328.
  • Cidaria, D., Borgonovi, G., Pirali, G. (1993). AB023, novel polyene antibiotics. J. Antibiot. 46: 251–254. doi: 10.7164/antibiotics.46.251
  • Clárdy, J., Fischbach, M.A., Walsh, C.T. (2006). New antibiotics from bacterial natural products. Nature Biotechnol. 24: 1541–1550. doi: 10.1038/nbt1266
  • Colin, J.E., Chafik, Z. (1986). Comparison of biological and chemical treatments for control of bacterial speck of tomato to under field conditions in Morocco. Plant Dis. 70: 1048–1050. doi: 10.1094/PD-70-1048
  • Copping, L.G., Duke, S.O. (2007). Natural products that have been used commercially as crop protection agents. Pest Manage. Sci. 63: 524–554. doi: 10.1002/ps.1378
  • Dayan, F.E, Cantrell, C.L., Duke, S.O. (2009). Natural products in crop protection. Bioor. Med. Chem. 17: 4022–4034. doi: 10.1016/j.bmc.2009.01.046
  • Dickinson, R.E., Errico, R.M., Giorgi, F., Bates, G.T. (1989). A regional climate model for the Western United States. Clim. Change. 15: 383–422.
  • Du, Y-L., Chen, S-F., Cheng, L-Y., Shen, X-L., Tian, Y., Li, Y-Q. (2009). Identification of a novel Streptomyces chattanoogensis L10 and enhancing its natamycin production by overexpres- sing positive regulator ScnRII. J. Microbiol. 47: 506–513. doi: 10.1007/s12275-009-0014-0
  • Dyson, P. (Ed.). (2011). Streptomyces: molecular biology and biotechnology. Horizon Scientific Press.
  • El-Enshasy, H.A., Farid, M.A., El-sayed, E.A. (2000). Influence of inoculum type and cultivation conditions on natamycin production by Streptomyces natalensis. J. Basic Microbiol. 40: 333–342. doi: 10.1002/1521-4028(200012)40:5/6<333::AID-JOBM333>3.0.CO;2-Q
  • Elleuch, L., Shaaban, M., Smaoui, S., Mellouli, L., Karray-Rebai, I., Fguira, L.F.B., Khaled, A., Hartmut, Laatsch, H. (2010). Bioactive Secondary Metabolites from a New Terrestrial Streptomyces sp. TN262. Appl. Biochem. Biotechnol. 162: 579–593. doi: 10.1007/s12010-009-8808-4
  • Frandberg, E., Petersson, C., Lundgren, L.N., Schnurer, J. (2000). Streptomyces halstedii K122 produces the antifungal compounds bafilomycin B1 and C1. Can. J. Microbiol. 46: 753-758.
  • Ganesan, Govindarajan, Velayudhan, S.S., Solomon, R., David, J. (2014). Antimicrobial potential of phylogenetically unique actinomycete, Streptomyces sp. JRG-04 from marine origin. Biologicals. 42: 305–311.
  • Genilloud, O., Gonzalez, I., Salazar, O., Martin, J., Tormo, J.R., Vicente, F. (2011). Current approaches to exploit actinomycetes as a source of novel natural products. J. Ind. Microbiol. Bio- technol. 38: 375–389. doi: 10.1007/s10295-010-0882-7
  • González-Franco, A.C., Robles-Hernandez, R.Y. (2009). Actinomycetes as biological control agents of phytopathogenic fungi. Tecnociencia Chihuahua. 3(2): 64–73.
  • Goodfellow, M., Hans-Peter, F. (2010). A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie Van Leeuwenhoek. 98: 119–142. doi: 10.1007/s10482-010-9460-2
  • Haas, D., Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudo-monads. Nat. Rev. Microbiol. 3: 307–319. doi: 10.1038/nrmicro1129
  • Hwang, B.K., Lee, J.Y., Kim, B.S., Moon, S.S. (1996). Isolation, structure elucidation, and antifungal activity of a manumycin-type antibiotic from Streptomyces flaveus. J. Agric. Food Chem. 44: 3653–3657. doi: 10.1021/jf960084o
  • Igarashi, Y., Ogawa, M., Sato, Y., Saito, N., Yoshida, R., Kunoh, H., Furumai, T. (2000). Fistupyrone, a novel inhibitor of the infection of Chinese cabbage by Alternaria brassicicola, from Streptomyces sp. TP-A0569. J. Antibiot. 53: 1117-1122. doi: 10.7164/antibiotics.53.1117
  • Jain, V., Mhatre, K., Nair, A.G., Shome, D., Natarajan, S. (2010). Aspergillus keratitis in vernalshield ulcer - a case report and review. Int. Ophthalmol. 30: 641–644. doi: 10.1007/s10792-010-9349-0
  • Jalaluldeen, A.M., Sijam, K., Othman, R. & Ahmad, Z.A.M. (2015). Growth characteristics and production of secondary metabolites from selected Streptomyces species isolated from the Rhizosphere of Chili Plant Growth. International Journal of Enhanced Research in Science Technology & Engineering. 4(1): 1–8. doi: 10.15623/ijret.2015.0401001
  • Ji, G.H., Wei, L.F., He, Y.Q., Wu, Y.P., Bai, X.H. (2008). Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biol. Control. 45: 288–296. doi: 10.1016/j.biocontrol.2008.01.004
  • Judelson, H.S., Blanco, F.A. (2005). The spores of Phytophthora: weapons of the plant destroyer. Nat. Rev. Microbiol. 3: 47–58. doi: 10.1038/nrmicro1064
  • Kim, B.S., Moon, S.S, Hwang, B.K. (1999). Isolation, identification, and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Can. J. Bot. 77: 850–858.
  • Kim, J.D., Han, J.W., Lee, S.C., Lee, D., Hwang, I.C., Kim, B.S. (2011). Disease control effect of strevertenes produced by Streptomyces psammoticus against tomato Fusarium wilt. J. Agric. Food Chem. 59: 1893–1899. doi: 10.1021/jf1038585
  • Ko, W.H., Tsou, Y.J., Lin, M.J., Chern, L.L. (2010). Activity and characterization of secondary metabolites produced by a new microorganism for control of plant diseases. New Biotechnol. 27: 397–402. doi: 10.1016/j.nbt.2010.05.014
  • Kumar, S.N., Mohandas, C., Nambisan, B. (2013). Purification of an antifungal compound, cyclo(l-ro-d-Leu) for cereals produced by Bacillus cereus subsp. thuringiensis associated with entomopathogenic nematode. Microbiological Research. 168: 278–288. doi: 10.1016/j.micres.2012.12.003
  • Lamour, K.H., Stam, R., Jupe, J., Huitema, E. (2012). The oomycete broad-host-range pathogen Phytophthora capsici. Mol. Plant Pathol. 13: 329–337. doi: 10.1111/j.1364-3703.2011.00754.x
  • Lee, J.Y., Lee, J.Y., Moon, S.S., Hwang, B.K. (2005). Isolation and antifungal activity of 4-phenyl-3-butenoic acid from Streptomyces koyangensis strain VK-A60. J. Agric. Food Chem. 53: 7696–7700. doi: 10.1021/jf050957r
  • Liang, J., Xu, Z., Liu, T., Lin, J., Cen, P. (2008). Effects of cultivation conditions on the production of natamycin with Streptomyces gilvosporeus LK-196. Enzyme Microb. Technol. 42: 145–150. doi: 10.1016/j.enzmictec.2007.08.012
  • Miyadoh, S. (1993). Research on antibiotic screening in Japan over the last decade: a producing microorganisms approach, Actinomycetologica. 7: 100–106. doi: 10.3209/saj.7_100
  • Mochizuki, J., Kobayashi, E., Furihata, K., Kawaguchi, A., Seto, H., Take, N. (1986). New ansamycin antibiotics, naphthoquinomycins A and B, inhibitors of fatty acid synthesis in Escherichia coli. J. Antibiot. 39: 157–161. doi: 10.7164/antibiotics.39.157
  • Müller, G., Matzanke, B.F., Raymond, K.N. (1984). Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantiorhodotorulic acid. J. Bacteriol. 160: 313–318.
  • Nakano, C., Horinouchi, S., Ohnishi, Y. (2011). Characterization of a novel sesquiterpene cyclase involved in (+)-caryolan-1-ol biosynthesis in Streptomyces griseus. J. Biol. Chem. 286: 27980–27987. doi: 10.1074/jbc.M111.265652
  • Nett, M., Ikeda, H., Moore, B.S. (2009). Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26: 1362–1384. doi: 10.1039/b817069j
  • Pal, K.K., Gardener, B.M. (2006). Biological control of plant pathogens. The Plant Health Instructor. 2: 1117–1142.
  • Parizi, T.E., Ansari, M., Elaminejad, T. (2012). Evaluation of the potential of Trichoderma viride in the control of fungal pathogens of Roselle (Hibiscus sabdariffa L.) in vitro. Microb. Pathog. 52: 201–205. doi: 10.1016/j.micpath.2012.01.001
  • Park, H.J., Lee, J.Y., Hwang, I.S., Yun, B.S., Kim, B.S., Hwang, B.K. (2006). Isolation and antifungal and anti-oomycete activities of staurosporine from Streptomyces roseoflavus strain LS-A24. J. Agric. Food Chem. 54: 3041–3046. doi: 10.1021/jf0532617
  • Pintado, C.M., Ferreira, M.A., Sousa, I. (2010). Control of pathogenic and spoilage micro- organisms from cheese surface by whey proteins films containing malic acid, nisin and natamycin. Food Control. 21: 240–246. doi: 10.1016/j.foodcont.2009.05.017
  • Prabavathy, V.R., Mathivanan, N., Murugesan, K. (2006). Control of blast and sheath blight diseases of rice using antifungal metabolites produced by Streptomyces sp. PM5. Biol. Control. 39: 313–319. doi: 10.1016/j.biocontrol.2006.07.011
  • Rakesh, K.N., Syed, J., Dileep, N., Prashith, K.T.R. (2013). Antibacterial and antioxidant activities of Streptomyces sp SRDP-H03 isolated from soil of household, Karnataka, India. J. Drug Deliv. Ther. 3: 47–53.
  • Roberts, T.C., Smith, P.A., Romesberg, F.E. (2011). Synthesis and biological characterization of arylomycin B antibiotics. J. Nat. Prod. 74: 956–961. doi: 10.1021/np200163g
  • Saleem, M., Rahman, A., Afza, A. (2007). Natamycin treatment of experimental Candida albicans induced keratomycosis in rabbits. West Indian Med. J. 56: 526–529.
  • Sanjivkumar, M., Babu, D.R., Suganya, A.M., Silambarasan, T., Balagurunathan, R., Immanuel, G. (2016). Investigation on pharmacological activities of secondary metabolite extracted from a mangrove associated actinobacteria Streptomyces olivaceus (MSU3). Biocatal. Agric. Biotechnol. 6: 82–90. doi: 10.1016/j.bcab.2016.03.001
  • Shimizu, M., Fujita, N., Nakagawa, Y., Nishimura, T., Furumai, T., Igarashi, Y., Onaka, H., Yoshida, R., Kunoh, H. (2001). Disease resistance of tissue-cultured seedlings of rhodo- dendron after treatment with Streptomyces sp. R-5. J. Gen. Plant Pathol. 67: 325–332. doi: 10.1007/PL00013040
  • Sola-Landa, A., Moura, R.S. and Martin, J.F. (2003). The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proceedings of the National Academy of Sciences USA. 100: 6133-6138.
  • Spear, L., Gallagher, J., McHale, L., McHale, A.P. (1993). Production of cellulase and β-glucosidase activities following growth of Streptomyces hygroscopicus on cellulose containing media. Biotechnol Lett. 15: 1265–1268. doi: 10.1007/BF00130309
  • Tapio, E., Pohto-Lahdenperä, A. (1991). Scanning electron microscopy of hyphal interaction between Streptomyces griseoviridis and some plant pathogenic fungi. Agric. Sci. Finl. 63: 435-441.
  • Thampi, A., Bhai, R.S. (2017). Rhizosphere Actinobacteria for combating Phytophthora capsici and Sclerotium rolfsii, the major soil borne pathogens of black pepper (Piper nigrum L) Biol. Control. 109: 1–13.
  • Tillie-Leblond, I., Tonnel, A.B. (2005). Allergic bronchopulmonary aspergillosis. Allergy. 60: 1004–1013. doi: 10.1111/j.1398-9995.2005.00887.x
  • Tu, J.C. (1980). Gliocladium virens, a destructive mycoparasite of Sclerotinia sclerotiorum. Phytopathology. 70: 670–674. doi: 10.1094/Phyto-70-670
  • Tu, J.C. (1988). Antibiosis of Streptomyces griseus against Colletotrichum lindemuthianum. Journal of Phytopathology. 121: 97–102. doi: 10.1111/j.1439-0434.1988.tb00960.x
  • Tweddell, R.J., Jabaji-hare, S.H., Charest, P.M., Phytologie, D.D., Laval, U., Foy, S., Glk, C. (1994). Production of chitinases and b-1,3-glucanases by Stachybotrys elegans, a mycoparasite of Rhizoctonia solani. Appl. Environ. Microbiol. 60: 489–495.
  • Vanneste, J.L., Yu, J., Beer, S.V. (1992). Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora. J. Bacteriol. 174: 2785–2796. doi: 10.1128/jb.174.9.2785-2796.1992
  • Varghese, S., Narmadha, R., Gomathi, D., Kalaiselvi, M., Devaki, K. (2013). Phytochemical screening and HPTLC finger printing analysis of Citrullus lanatus (Thunb.) seed. J. Acute Dis. 2: 122–126. doi: 10.1016/S2221-6189(13)60111-0
  • Wan, M., Li, G., Zhang, J., Jiang, D., Huang, H.C. (2008). Effect of volatile sub-stances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol. Control. 46: 552–559. doi: 10.1016/j.biocontrol.2008.05.015
  • Watve, M.G., Tickoo, R., Jog, M.M., Bhole, B.D. (2001). How many antibiotics are produced by the genus Streptomyces? Arch Microbiol. 176: 386-390. doi: 10.1007/s002030100345
  • Weller, D.M. (1988). Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 379–407. doi: 10.1146/annurev.py.26.090188.002115
  • Yamaguchi, I. (1996). Pesticides of microbial origin and applications of molecular biology. In: Copping, L.G. (Ed.), Crop Protection Agents from Nature: Natural Products and Analogues. The Royal Society of Chemistry, Cambridge. UK, 27-49.
  • Ziedan, E.S.H., Farrag, E.S., El-Mohamedy, R.S., Abd-Alla, M.A. (2010). Streptomyces alni as a biocontrol agent to root-rot of grapevine and increasing their efficiency by biofertilizers inocula. Arch Phytopathology Plant Protect. 43: 634-646.
  • Zucchi, T.D., De Moraes, L.A.B., De Melo, I.S. (2008). Streptomyces sp. ASBV-1 reduces aflatoxin accumulation by Aspergillus parasiticus in peanut grains. J. Applied Microbiol. 105: 2153-2160. doi: 10.1111/j.1365-2672.2008.03940.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.