47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bergenin Attenuates Sodium Selenite-Induced Hepatotoxicity via Improvement of Hepatic Oxidant-Antioxidant Balance in HepG2 Cells and ICR Mice

, & ORCID Icon
Pages 97-115 | Received 14 Aug 2020, Accepted 17 Mar 2021, Published online: 20 Apr 2021

References

  • Drake, E.N. (2006). Cancer chemoprevention: selenium as a prooxidant, not an antioxidant. Medical Hypotheses. 67(2): 318-322. doi: 10.1016/j.mehy.2006.01.058
  • Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S. and Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal. 5(1): 9-19. doi: 10.1097/WOX.0b013e3182439613
  • Johnson, V.J., Tsunoda, M. and Sharma, R.P. (2000). Increased production of proinflammatory cytokines by murine macrophages following oral exposure to sodium selenite but not to seleno-L-methionine. Archives of Environmental Contamination and Toxicology. 39: 243-250. doi: 10.1007/s002440010101
  • Shen, H.M., Yang, C.F., Liu, J. and Ong, C.N. (2000). Dual role of glutathione in selenite-induced oxidative stress and apoptosis in human hepatoma cells. Free Radical Biology and Medicine. 28(7): 1115-1124. doi: 10.1016/S0891-5849(00)00206-9
  • Chen, J., Jiang, S., Wang, J., Renukuntla, J., Sirimulla, S. and Chen J. (2019). A comprehensive review of cytochrome P450 2E1 for xenobiotic metabolism. Drug Metabolism Reviews. 5(12): 178-195. doi: 10.1080/03602532.2019.1632889
  • Gonzalez, F.J. (2005). Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutation Research. 569: 101-110. doi: 10.1016/j.mrfmmm.2004.04.021
  • Cichoz-Lach, H. and Michalak, A. (2014). Oxidative stress as a crucial factor in liver diseases. World Journal of Gastroenterology. 20(25): 8082-8091. doi: 10.3748/wjg.v20.i25.8082
  • Lü, J.M., Lin, P.H., Yao, Q. and Chen, C. (2010). Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. Journal of Cellular and Molecular Medicine. 14(4): 840-860. doi: 10.1111/j.1582-4934.2009.00897.x
  • Wided, K., Hassiba, R. and Mesbah, L. (2015). Quercetin protects liver cells and mitochondria against doxorubicin induced oxidative stress in Albinos’ rats. Journal of Biologically Active Product from Nature. 5(5): 331-338. doi: 10.1080/22311866.2014.957076
  • Tiya, S.Y., Sewani-Rusike, C.R. and Taderera, T. (2019). Hepatoprotective effects of Fadogia ancylantha (Makoni Tea) on ethanol-induced liver damage in Wistar rats. Journal of Biologically Active Product from Nature. 9(5): 352-363. doi: 10.1080/22311866.2019.1694434
  • Bajracharya, G.B. (2015). Diversity, pharmacology and synthesis of bergenin and its derivatives: potential materials for therapeutic usages. Fitoterapia. 101: 133-152. doi: 10.1016/j.fitote.2015.01.001
  • Lim, H.K., Kim, H.S., Choi, H.S., Oh, S. and Choi, J. (2000). Hepatoprotective effects of bergenin, a major constituent of Mallotus japonicus, on carbon tetrachloride-intoxicated rats. Journal of Ethnopharmacology. 72(3): 469-474. doi: 10.1016/S0378-8741(00)00260-9
  • Nazir, N., Koul, S., Qurishi, M.A., Najar, M.H. and Zargar, M.I. (2011). Evaluation of antioxidant and antimicrobial activities of bergenin and its derivatives obtained by chemoenzymatic synthesis. European Journal of Medicinal Chemistry. 46(6): 2415-2420. doi: 10.1016/j.ejmech.2011.03.025
  • Miret, S., De Groene, E.M. and Klaffke, W. (2006). Comparison of in vitro assays of cellular toxicity in the human hepatic cell line HepG2. Journal of Biomolecular Screening. 11(2): 184-193. doi: 10.1177/1087057105283787
  • McMillian, M.K., Li, L., Parker, J.B., Patel, L., Zhong, Z., Gunnett, J.W., Powers W.J. and Johnson, M.D. (2002). An improved resazurin-based cytotoxicity assay for hepatic cells. Cell Biology and Toxicology. 18(3): 157-173. doi: 10.1023/A:1015559603643
  • Sriset, Y., Chatuphonprasert, W. and Jarukamjorn, K. (2019). Optimized models of xenobiotic-induced oxidative stress in HepG2 cells. Tropical Journal of Pharmaceutical Research. 18(5): 1001-1007.
  • Sriset, Y., Chatuphonprasert, W. and Jarukamjorn, K. (2020). Bergenin exhibits hepatoprotective activity against ethanol-induced oxidative stress in ICR mice. Current Topics in Nutraceutical Research. 18(4): 297-302.
  • Rashmi, K. and Aparna, H. (2017). DNP induced oxidative stress on blood components ameliorated by pyrrole derivative of Tinospora cordifolia. Journal of Applied Biology and Biotechnology. 5(1): 59-65. doi: 10.7324/JABB.2017.50110
  • Shinomol, G.K. and Muralidhara. (2007). Differential induction of oxidative impairments in brain regions of male mice following subchronic consumption of Khesari dhal (Lathyrus sativus) and detoxified Khesari dhal. Neurotoxicology. 28(4): 798-806. doi: 10.1016/j.neuro.2007.03.002
  • Qin, X.G., Hua, Z., Shuang, W., Wang, Y.H. and Cui, Y.D. (2010). Effects of matrine on HepG2 cell proliferation and expression of tumor relevant proteins in vitro. Pharmaceutical Biology. 48(3): 275-281. doi: 10.3109/13880200903104101
  • Jarukamjorn, K., Jearapong, N., Pimson, C. and Chatuphonprasert, W. (2016). A highfat, high-fructose diet induces antioxidant imbalance and increases the risk and progression of nonalcoholic fatty liver disease in mice. Scientifica. 1-10. doi: 10.1155/2016/5029414
  • Jarukamjorn, K., Chatuphonprasert, W., Jearapong, N., Punvittayagul, C. and Wongpoomchai, R. (2019). Tetrahydrocurcumin attenuates phase I metabolizing enzyme-triggered oxidative stress in mice fed a high-fat and high-fructose diet. Journal of Functional Foods. 55: 117-125. doi: 10.1016/j.jff.2019.02.021
  • Sukkasem, N., Chatuphonprasert, W. and Jarukamjorn, K. (2019). Altered cytochrome P450 profiles by Plumbago indica Linn. and plumbagin after oral administration in mice. Pharmacognosy Magazine. 14(58): 507-512.
  • Schrauzer, G.N. (2001). Nutritional selenium supplements: product types, quality, and safety. Journal of the American College of Nutrition. 20(1): 1-4. doi: 10.1080/07315724.2001.10719007
  • Wycherly, B.J., Moak, M.A. and Christensen, M.J. (2004). High dietary intake of sodium selenite induces oxidative DNA damage in rat liver. Nutrition and Cancer. 48(1): 78-83. doi: 10.1207/s15327914nc4801_11
  • Sid, B., Verrax, J. and Calderon, P.B. (2013). Role of oxidative stress in the pathogenesis of alcohol-induced liver disease. Free Radical Research. 47(11): 894-904. doi: 10.3109/10715762.2013.819428
  • Shen, H.M., Yang, C.F. and Ong, C.N. (1999). Sodium selenite-induced oxidative stress and apoptosis in human hepatoma HepG2 cells. International Journal of Cancer. 81(5): 820-828. doi: 10.1002/(SICI)1097-0215(19990531)81:5<820::AID-IJC25>3.0.CO;2-F
  • Niki, E., Yoshida, Y., Saito, Y. and Noguchi, N. (2005). Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochemical and Biophysical Research Communications. 338(1): 668-676. doi: 10.1016/j.bbrc.2005.08.072
  • Li, S., Tan, H.Y., Wang, N., Zhang, Z.J., Lao, L., Wong, C.W. and Feng, Y. (2015). The role of oxidative stress and antioxidants in liver diseases. International Journal Molecular Sciences. 16(11): 26087-26124. doi: 10.3390/ijms161125942
  • Vitaglione, P., Morisco, F., Caporaso, N. and Fogliano, V. (2004). Dietary antioxidant compounds and liver health. Critical Reviews in Food Science and Nutrition. 44(7-8): 575-586. doi: 10.1080/10408690490911701
  • Zhang, J., Wang, H., Yan, X. and Zhang, L. (2005). Comparison of short-term toxicity between nano-Se and selenite in mice. Life Sciences. 76(10): 1099-1109. doi: 10.1016/j.lfs.2004.08.015
  • Zhang, J., Wang, H., Peng, D. and Taylor, E.W. (2008). Further insight into the impact of sodium selenite on selenoenzymes: high-dose selenite enhances hepatic thioredoxin reductase 1 activity as a consequence of liver injury. Toxicology Letters. 176(3): 223-229. doi: 10.1016/j.toxlet.2007.12.002
  • Slencu, B.G., Solcan, C., Ciobanu, C., Avasilcai, L. and Cuciureanu, R. (2013). Dosedependent subacute toxicity of sodium selenite in male Wistar rats. The Iceland Journal of Life Science. 63(7): 57-69.
  • Kim, H.S., Lim, H.K., Chung, M.W. and Kim, Y.C. (2000). Antihepatotoxic activity of bergenin, the major constituent of Mallotus japonicus, on carbon tetrachloride-intoxicated hepatocytes. Journal of Ethnopharmacology. 69(1): 79-83. doi: 10.1016/S0378-8741(99)00137-3
  • Ambika, S. and Saravanan, R. (2016). Effect of bergenin on hepatic glucose metabolism and insulin signaling in C57BL/6J mice with high fat-diet induced type 2 diabetes. Journal of Applied Biomedicine. 14(3): 221-227. doi: 10.1016/j.jab.2016.04.002
  • Yun, J., Lee, Y., Yun, K. and Oh, S. (2015). Bergenin decreases the morphine-induced physical dependence via antioxidative activity in mice. Archives of Pharmacal Research. 38(6): 1248-1254. doi: 10.1007/s12272-014-0534-y
  • Lim, H.K., Kim, H.S., Choi, H.S., Choi, J., Kim, S.H. and Chang, M.J. (2001). Effects of bergenin, the major constituent of Mallotus japonicus against D-galactosamine-induced hepatotoxicity in rats. Pharmacology. 63: 71-75. doi: 10.1159/000056115
  • Strehlow, K., Rotter, S., Wassmann, S., Adam, O., Grohé, C., Laufs, K., Böhm, M. and Nickenig, G. (2003). Modulation of antioxidant enzyme expression and function by estrogen. Circulation Research. 93(2): 170-177. doi: 10.1161/01.RES.0000082334.17947.11
  • Sriset, Y., Chatuphonprasert, W. and Jarukamjorn, K. (2021). Bergenin improves antioxidative system in tert-butyl hydroperoxide-induced oxidative stress in mice. Tropical Journal of Natural Product Research. 5(1): 105-112. doi: 10.26538/tjnpr/v5i1.14
  • Forman, H.J., Zhang, H. and Rinna, A. (2009). Glutathione: overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine. 30(1-2): 1-12. doi: 10.1016/j.mam.2008.08.006
  • Song, H., Wang, J., Zhang, R., Liu, X., Yuan, G., Wei, C., Zhao, W., Li, R., Wang, B. and Guo, R. (2013). In vivo metabolism study of bergenin in rats by HPLC-QTOF mass spectrometry. Biomedical Chromatography. 27(11): 1398-1405. doi: 10.1002/bmc.2934
  • Rastogi, S. and Rawat, A.K.S. 2008. A comprehensive review on bergenin, a potential hepatoprotective and antioxidative phytoconstituent. Herba Polonica. 54(2): 66-79.
  • Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N. and Kim, C.K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports. 10: 2611. https://doi.org/10.1038/s41598-020-59451-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.