55
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Secondary Metabolites and their Biological Activities from Endophytic Fungal Strain Aspergillus terreus XJA8 Associated with Vernonia anthelmintica

, , , , , & show all
Pages 421-435 | Received 01 Nov 2022, Accepted 27 Nov 2022, Published online: 09 Dec 2022

References

  • Dogra, N.K., Kumar, S., Kumar, D. (2020). Vernonia anthelmintica (L.) Willd: An ethno-medicinal, phytochemical, pharmacological and toxicological review. Journal of Ethno-pharmacology. 256: 112777. doi: 10.1016/j.jep.2020.112777
  • Rustamova, N., Bozorov, K., Efferth, T., Yili, A. (2020). Novel secondary metabolites from endophytic fungi: synthesis and bio-logical properties. Phytochemistry Reviews. 19: 425-448. doi: 10.1007/s11101-020-09672-x
  • Rustamova, N., Bobakulov, K., Begmatov, N., Turak, A., Yili, A., Aisa, H.A. (2019). Secondary metabolites produced by endophytic Pantoea ananatis derived from roots of Baccharoides anthelmintica and their effect on melanin synthesis in murine B16 cells. Natural Product Research. 35: 796-801. doi: 10.1080/14786419.2019.1597354
  • Liao, G., Wu, P., Liu, Z., Xue, J., Li, H., Wei, X. (2021). 2 H-pyranone and isocoumarin derivatives from the endophytic fungus Pestalotiopsis microspora SC3082 derived from Scaevola taccada (Gaertn.) Roxb. Natural Product Research. 35: 3644-3651. doi: 10.1080/14786419.2020.1719488
  • Duan, X-X., Qin, D., Song, H-C., et al. (2019). Irpexlacte AD, four new bioactive metabolites of endophytic fungus Irpex lacteus DR10-1 from the waterlogging tolerant plant Distylium chinense. Natural Product Research. 32: 151-156.
  • Yang, Z-D., Li, Z-J., Zhao, J-W., Sun, J-H., Yang, L-J., Shu, Z-M. (2019). Secondary Metabolites and PI3K Inhibitory Activity of Colletotrichum gloeosporioides, a Fungal Endophyte of Uncaria rhynchophylla. Current Microbiology. 76: 904-908. doi: 10.1007/s00284-019-01707-7
  • Syed, B., Prasad, MNN., Rao, HCY., (2015). Actinomycetic Symbionts Inhabiting Euphorbia hirta L. with Antimicrobial Potentials. Journal of Biologically Active Products from Nature. 5: 419-426. doi: 10.1080/22311866.2015.1137489
  • Akshatha, J.V., Prakash, H.S., Nalini, M.S. (2016). Actinomycete Endophytes from the Ethno Medicinal Plants of Southern India: Antioxidant Activity and Characterization Studies. Journal of Biologically Active Products from Nature. 6: 166-172. doi: 10.1080/22311866.2016.1191971
  • Rustamova, N., Wubulikasimu, A., Mukhamedov, N., Gao, Y., Egamberdieva, D., Yili, A. (2020). Endophytic bacteria associated with medicinal plant Vernonia anthelmintica: Diversity and characterization. Current Microbiology. 77: 1457-1465. doi: 10.1007/s00284-020-01924-5
  • Rustamova, N., Gao, Y., Zhang, Y., Yili, A. (2020). Biological Activity of Endophytic Fungi from the Roots of the Medicinal Plant Vernonia anthelmintica. Microorganisms. 8: 586. doi: 10.3390/microorganisms8040586
  • Niu, L., Rustamova, N., Ning, H., Paerhati, P., Lu, C., Yili, A. (2022). Diversity and Biological Activities of Endophytic Fungi from the Flowers of the Medicinal Plant Vernonia anthelmintica. International Journal of Molecular Sciences. 23: 19.
  • Nei, M., Saitou, N. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 4: 406-425.
  • Shurigin, V., Alikulov, B., Davranov, K., Ismailov, Z. (2022). Bacterial endophytes from halophyte black saxaul (Haloxylon aphyllum Minkw.) and their plant growth-promoting properties. Journal of Applied Biology and Biotechnology. 10: 45-53.
  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap . Evolution. 39: 783-791.
  • Tamura, K., Nei, M., Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences. 101: 11030-11035. doi: 10.1073/pnas.0404206101
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution. 30: 2725-2729. doi: 10.1093/molbev/mst197
  • Gai, C.S., Lacava, P.T., Maccheroni, J.W. (2009). Diversity of endophytic yeasts from sweet orange and their localization by scanning electron microscopy. Journal of Basic Microbiology. 49: 441-451. doi: 10.1002/jobm.200800328
  • Li, G., Kusari, S., Lamshöft, M., Schüffler, A., Laatsch, H., Spiteller, M. (2014). Antibacterial Secondary Metabolites from an Endophytic Fungus, Eupenicillium sp. LG41. Journal of Natural Products. 77: 2335-2341. doi: 10.1021/np500111w
  • Yang, W., Chen, Y., Cai, R. (2020). Benzopyran Derivatives and an Aliphatic Compound from a Mangrove Endophytic Fungus Penicillium citrinum QJF-22. Chemistry & Biodiversity. 17: e2000192.
  • Rasulov, B., Rustamova, N., Yili, A., Zhao, H-Q., Aisa, H. A. (2016). Synthesis of silver nanoparticles on the basis of low and high molar mass exopolysaccharides of Bradyrhizobium japonicum 36 and its antimicrobial activity against some pathogens. Folia Microbiologica. 61: 283-293. doi: 10.1007/s12223-015-0436-5
  • Saboora, A., Sajjadi, S-T., Mohammadi, P., Fallahi, Z. (2019). Antibacterial activity of different composition of aglycone and glycosidic saponins from tuber of Cyclamen coum Miller. Industrial Crops and Products. 140: 111662. doi: 10.1016/j.indcrop.2019.111662
  • Liu, S-S., Jiang, J-X., Huang, R. (2019). A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus Phoma sp. Phytochemistry Letters. 29: 75-78. doi: 10.1016/j.phytol.2018.11.005
  • Islam, M.S., Ishigami, K., Watanabe, H. (2007). Synthesis of (−)-mellein, (+)-ramulosin, and related natural products. Tetrahedron. 63: 1074-1079. doi: 10.1016/j.tet.2006.11.068
  • Zheng, K-X., Jiang, Y., Jiang, J-X., Huang, R., He, J., Wu, S-H. (2019). A new phthalazinone derivative and a new isoflavonoid glycoside from lichen-associated Amycolatopsis sp. Fitoterapia. 135: 85-89. doi: 10.1016/j.fitote.2019.04.011
  • Dewi, R.T., Tachibana, S., Darmawan, A. (2014). Effect on α-glucosidase inhibition and antioxidant activities of butyrolactone derivatives from Aspergillus terreus MC751. Medicinal Chemistry Research. 23: 454-460. doi: 10.1007/s00044-013-0659-4
  • Yang, X., Peng, T., Yang, Y. (2015). Antimicrobial and antioxidant activities of a new benzamide from endophytic Streptomyces sp. YIM 67086. Natural Product Research. 29: 331-335. doi: 10.1080/14786419.2014.945174
  • Lo, W-L., Huang, L-Y., Wang, H-M., Chen, C-Y. (2010). Chemical constituents from the stems of Michelia alba. Chemistry of Natural Compounds. 46: 664-665. doi: 10.1007/s10600-010-9708-0
  • Zuo, W-J., Jin, P-F., Dong, W-H., Dai, H-F., Mei, W-L. (2014). Metabolites from the endophytic fungus HP-1 of Chinese eaglewood. Chinese Journal of Natural Medicines. 12: 151-153. doi: 10.1016/S1875-5364(14)60025-X
  • André, A., Wojtowicz, N., Touré, K., Stien, D., Eparvier, V. (2017). New acorane sesquiterpenes isolated from the endophytic fungus Colletotrichum gloeosporioides SNB-GSS07. Tetrahedron Letters. 58: 1269-1272. doi: 10.1016/j.tetlet.2017.02.024
  • Rathnayake, G.R.N., Kumar, N.S., Jayasinghe, L., Araya, H., Fujimoto, Y. (2018). Chemical investigation of metabolites produced by an endophytic fungi Phialemonium curvatum from the leaves of Passiflora edulis. Natural Product Research. 32 :2483-2486. doi: 10.1080/14786419.2017.1416373
  • Sang, S., Lapsley, K., Rosen, R.T., Ho, C-T. (2002). New Prenylated Benzoic Acid and Other Constituents from Almond Hulls (Prunus amygdalus Batsch). Journal of Agricultural and Food Chemistry. 50 :607-609. doi: 10.1021/jf0110194
  • Shen, D-Y., Kuo, P-C., Huang, S-C. (2017). Constituents from the leaves of Clausena lansium and their anti-inflammatory activity. Journal of Natural Medicines. 71 :96-104. doi: 10.1007/s11418-016-1033-x
  • Mei, R-Q., Nong, X-H., Wang, B. (2020). A new phenol derivative isolated from mangrove-derived fungus Eupenicillium sp. HJ002. Natural Product Research. 35: 4051-4057 doi: 10.1080/14786419.2020.1712388
  • Diederich, F., Carcanague, D. (1994). Large Water-Soluble Cyclophanes with Convergent Intracavity Functionality. Helvetica. 77 :800-818. doi: 10.1002/hlca.19940770320
  • Monggoot, S., Pichaitam, T., Tanapichatsakul, C., Pripdeevech, P. (2018). Antibacterial potential of secondary metabolites produced by Aspergillus sp., an endophyte of Mitrephora wangii. Archives of Microbiology. 200 :951-959. doi: 10.1007/s00203-018-1511-5
  • El-hawary, S.S., Moawad, A.S., Bahr, H.S., Abdelmohsen, U.R., Mohammed, R. (2020). Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Advances. 10: 22058-22079. doi: 10.1039/D0RA04290K
  • Shimada, A., Kusano, M., Takeuchi, S., Fujioka, S., Inokuchi, T., Kimura, Y. (2002). Aspterric Acid and 6-Hydroxy-mellein, Inhibitors of Pollen Development in Arabidopsis thaliana, Produced by Aspergillus terreus. Zeitschrift für Naturforschung C. 57: 459-464. doi: 10.1515/znc-2002-5-610
  • Lai, D., Li, J., Zhao, S. (2021). Chromone and isocoumarin derivatives from the endophytic fungus Xylomelasma sp. Samif07, and their antibacterial and antioxidant activities. Natural Product Research. 35: 4616-4620. doi: 10.1080/14786419.2019.1696333
  • Kim, Y., Cho, J-Y., Kuk, J-H. (2004). Identification and Antimicrobial Activity of Phenylacetic Acid Produced by Bacillus licheniformis Isolated from Fermented Soybean, Chungkook-Jang. Current Microbiology. 48: 312-317. doi: 10.1007/s00284-003-4193-3
  • Nguyen, X.H., Naing, K.W., Lee, Y., Kim, Y.H., Moon, J.H., Kim, K.Y. (2015). Antagonism of antifungal metabolites from Streptomyces griseus H7602 against Phytophthora capsici. Journal of Basic Microbiology. 55: 45-53. doi: 10.1002/jobm.201300820
  • Lee, K.E., Park, J.E., Jung, E. (2016). A study of facial wrinkles improvement effect of veratric acid from cauliflower mushroom through photo-protective mechanisms against UVB irradiation. Archives of Dermatological Research. 308: 183-192. doi: 10.1007/s00403-016-1633-z
  • Phattanawasin, P., Pojchanakom, K., Sotanaphun, U., Piyapolrungroj, N., Zungsontiporn, S. (2007). Weed growth inhibitors from Aspergillus fischeri TISTR 3272. Natural Product Research. 21: 1286-1291. doi: 10.1080/14786410701766364
  • Zhou, ZY., Liu, R., Jiang, MY. (2009). Two new cleistanthane diterpenes and a new isocoumarine from cultures of the basidiomycete Albatrellus confluens. Chemical and Pharmaceutical Bulletin. 57: 975-978. doi: 10.1248/cpb.57.975
  • Liu, Z., Xi, R., Zhang, Z. (2014). 4-Hydroxyphenylacetic Acid Attenuated Inflammation and Edema via Suppressing HIF-1α in Seawater Aspiration-Induced Lung Injury in Rats. International Journal of Molecular Sciences. 15(7).
  • Yamashita-Higuchi, Y., Sugimoto, S., Matsunami, K., Inagaki, M., Otsuka, H., Takeda, Y. (2015). Nitrile-containing phenolic glucosides from the leaves of Glochidion acuminatum. Chemical and Pharmaceutical Bulletin. 63: 49-53. doi: 10.1248/cpb.c14-00638
  • Cho, J-Y., Moon, J-H., Seong, K-Y., Park, K-H. (1998). Antimicrobial Activity of 4-Hydroxybenzoic Acid and trans 4-Hydroxycinnamic Acid Isolated and Identified from Rice Hull. Bioscience, Biotechnology, and Biochemistry. 162: 2273-2276. doi: 10.1271/bbb.62.2273
  • Chong, KP., Rossall, S., Atong, M. (2009). In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma boninense. Journal of Agricultural Science. 12: 15.
  • Mao, S., Lee, S-J., Hwangbo, H. (2006). Isolation and Characterization of Antifungal Substances from Burkholderia sp. Culture Broth. Current Microbiology. 53: 358-364. doi: 10.1007/s00284-005-0333-2
  • Cazar, M.E., Schmeda-Hirschmann, G., Astudillo, L. (2005). Antimicrobial Butyro-lactone I Derivatives from the Ecuadorian Soil Fungus Aspergillus terreus Thorn. var terreus. World Journal of Microbiology and Biotechnology. 21: 1067-1075. doi: 10.1007/s11274-004-8150-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.