28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of in vitro and in vivo Anti-neuroinflammatory and Genotoxic Activities of the Alkaloid Tryptophol-5-O-β-D-glucopyranoside from Ocotea minarum

, , , , , , , , , , & show all
Pages 156-166 | Received 15 Feb 2023, Accepted 11 Jun 2023, Published online: 27 Jun 2023

References

  • Omar, F, Tareq, A.M., Alqahtani, A.M., Dhama, K., Sayeed, M.A., Emran, T bin., et al. (2021). Plant-based indole alkaloids: A comprehensive overview from a pharmacological perspective. Molecules. 26(8): 2297. doi: 10.3390/molecules26082297
  • Debnath, B., Singh, W.S., Das, M., Goswami, S., Singh, M.K., Maiti, D. et al. (2018). Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem. 9: 56-72. doi: 10.1016/j.mtchem.2018.05.001
  • Zeng, P., Wang, X.M., Ye C.Y., Su, H.F., Tian, Q. (2021). The main alkaloids in Uncariarhynchophylla and their anti-Alzheimer’s disease mechanism determined by a network pharmacology approach. Int. J. Mol. Sci. 22(7): 3612. doi: 10.3390/ijms22073612
  • Geetha, R.G., Ramachandran, S. (2021). Recent advances in the anti-inflammatory activity of plant-derived alkaloid rhynchophylline in neurological and cardio-vascular diseases. Pharmaceutics. 13(8): 1170. doi: 10.3390/pharmaceutics13081170
  • Deng, X.K., Yin, W., Li, W.D., Yin, F.Z., Lu, X.Y., Zhang, X.C. et al. (2006). The anti-tumor effects of alkaloids from the seeds of Strychnosnux-vomica on HepG2 cells and its possible mechanism. J. Ethnopharmacol. 106(2): 179-186. doi: 10.1016/j.jep.2005.12.021
  • Bánhidy, F., Ács, N., Puhó, E., Czeizel, A.E. (2007). Ergotamine treatment during pregnancy and a higher rate of low birthweight and preterm birth. Br. J. Clin. Pharmacol. 64(4): 510-516. doi: 10.1111/j.1365-2125.2007.02901.x
  • Klotz, J.L., Britt, J.L., Miller Jr, M.F., Snider, M.A., Aiken, G.E., Long, N.M. et al. (2019). Ergot alkaloid exposure during gestation alters: II. Uterine and umbilical artery vasoactivity. J. Anim. Sci. 97(4): 1891-1902. doi: 10.1093/jas/skz069
  • Klivinyi, C., Rumpold-Seitlinger, G., Dorn, C., Sampl, L., Sivro, N., Lang-Illievich, K. et al. (2021). Perioperative use of physostigmine to reduce opioid consum-ption and peri-incisional hyper-algesia: a randomised controlled trial. Br. J. Anaesth. 126(3): 700-705. doi: 10.1016/j.bja.2020.10.039
  • Tazi, A., Lorillon, G., Haroche, J., Neel, A., Dominique, S., Aouba, A. et al. (2017). Vinblastine chemotherapy in adult patients with langerhans cell histiocytosis: a multi-center retrospective study. Orphanet. J. Rare Dis. 12(1): 1-10. doi: 10.1186/s13023-017-0651-z
  • Leão, A.H.F.F., Meurer, Y.S.R., Freitas, T.A., Medeiros, A.M., Abílio, V.C., Izídio, G.S. et al. (2021). Changes in the mesocorticolimbic pathway after low dose reserpine-treatment in Wistar and Spontaneously hypertensive rats (SHR): implications for cognitive deficits in a progressive animal model for Parkinson’s disease. Behavioural Brain Research. 410: 113349. doi: 10.1016/j.bbr.2021.113349
  • Monasky, M.M., Micaglio, E., D’Imperio, S., Pappone, C. (2021). The Mechanism of Ajmaline and Thus Brugada Syndrome: Not Only the Sodium Channel! Front Cardiovasc. Med. 8: 782596.
  • Kip, E., Parr-Brownlie, L.C. (2023). Healthy lifestyles and wellbeing reduce neuroinflammation and prevent neuro-degenerative and psychiatric disorders. Frontiers in Neuroscience. 17: 130. doi: 10.3389/fnins.2023.1092537
  • Yamanaka, K. (2023). Neuroinflammation in neurodegenerative disease. Nagoya Journal of Medical Science. 85(1): 30.
  • de Araújo Boleti, A.P., de Oliveira Flores, T.M., Moreno, S.E., Dos Anjos, L., Mortari, M.R., Migliolo, L. (2020). Neuroinflammation: An overview of neuro-degenerative and metabolic diseases and of biotechnological studies. Neurochemistry International. 136: 104714. doi: 10.1016/j.neuint.2020.104714
  • Zanin, S.M.W., Lordello, A.L.L. (2007). Alcalóides aporfinóides do gênero Ocotea (Lauraceae). Quim Nova. 30: 92-98. doi: 10.1590/S0100-40422007000100020
  • Garcez, W.S., Garcez, F.R., da Silva, L.M.G.E., Shimabukuro, A.A. (2005). Indole alkaloid and other constituents from Ocotea minarum. J. Braz. Chem. Soc. 16: 1382-1386. doi: 10.1590/S0103-50532005000800013
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65(1-2): 55-63. doi: 10.1016/0022-1759(83)90303-4
  • Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R. (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126(1): 131-138. doi: 10.1016/0003-2697(82)90118-X
  • Moraga, A.A., Graf, U. (1989). Genotoxicity testing of antiparasitic nitrofurans in the Drosophila wing somatic mutation and recombination test. Mutagenesis. 4(2): 105-110. doi: 10.1093/mutage/4.2.105
  • Graf, U., Würgler, F.E., Katz, A.J., Frei, H., Juon, H., Hall, C.B. et al. (1984). Somatic mutation and recombination test in Drosophila melanogaster. Environ. Mutagen. 6(2): 153-188. doi: 10.1002/em.2860060206
  • Frei, H., Würgler, F.E. (1988). Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive result. Mutation Research/Environmental Muta-genesis and Related Subjects. 203(4): 297-308. doi: 10.1016/0165-1161(88)90019-2
  • Santos, J.H., Graf, U., Reguly, M.L., de Andrade, H.H.R. (1999). The synergistic effects of vanillin on recombination predominate over its antimutagenic action in relation to MMC-induced lesions in somatic cells of Drosophila melanogaster. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 444(2): 355-365. doi: 10.1016/S1383-5718(99)00101-1
  • Sinigaglia, M., Lehmann, M., Baumgardt, P., Amaral, V.S., do Dihl, R.R., Reguly, M.L., et al. (2006). Vanillin as a modulator agent in SMART test: Inhibition in the steps that precede N-methyl-N-nitrosourea-, N-ethyl-N-nitrosourea-, ethylmethane-sulphonate-and bleomycin-genotoxicity. Mutation Research/Genetic Toxicology and Environmental Muta-genesis. 607(2): 225-230. doi: 10.1016/j.mrgentox.2006.04.012
  • van den Berg, M.P.M., Meurs, H., Gosens, R. (2018). Targeting arginase and nitric oxide metabolism in chronic airway diseases and their co-morbidities. Curr. Opin. Pharmacol. 40: 126-133. doi: 10.1016/j.coph.2018.04.010
  • Rodrigues Lima-Junior, J., Sulzer, D., Lindestam Arlehamn, C.S., Sette, A. (2021). The role of immune-mediated alterations and disorders in ALS disease. Hum. Immunol. 82(3): 155-161. doi: 10.1016/j.humimm.2021.01.017
  • Leng, F., Edison, P. (2021). Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 17(3): 157-172. doi: 10.1038/s41582-020-00435-y
  • Badanjak, K., Fixemer, S., Smajić, S., Skupin, A., Grünewald, A. (2021). The contribution of microglia to neuroinflammation in Parkinson’s disease. Int. J. Mol. Sci. 22(9): 4676. doi: 10.3390/ijms22094676
  • Kim, S.K., Ko, Y.H., Lee, Y., Lee, S.Y., Jang, C.G. (2021). Antineuroinflammatory effects of 7,3’,4’-trihydroxyisoflavone in lipopolysaccharide-stimulated bv2 microglial cells through mapk and nf-κb signaling suppression. Biomol. Ther (Seoul). 29(2): 127-134. doi: 10.4062/biomolther.2020.093
  • Wang-sheng, C., Jie, A, Jian-jun, L., Lan, H., Zeng-bao, X., Chang-qing, L. (2017). Piperine attenuates lipopolysaccharide (LPS)- induced inflammatory responses in BV2 microglia. Int. Immunopharmacol. 42: 44-48. doi: 10.1016/j.intimp.2016.11.001
  • Véras, J.H., do Vale, C.R., da Silva Lima, D.C., dos Anjos, M.M., Bernardes, A., de Moraes Filho A.V., et al. (2022). Modulating effect of a hydroxychalcone and a novel coumarin–chalcone hybrid against mitomycin-induced genotoxicity in somatic cells of Drosophila melanogaster. Drug Chem. Toxicol. 45(2): 775-784. doi: 10.1080/01480545.2020.1776314
  • de Moraes Filho, A.V., Carvalho, C de J.S., Verçosa, C.J., Gonçalves, M.W., Rohde, C., e Silva, D de M., et al. (2017). In vivo genotoxicity evaluation of efavirenz (EFV) and tenofovir disoproxil fumarate (TDF) alone and in their clinical combinations in Drosophila melanogaster. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 820: 31-38. doi: 10.1016/j.mrgentox.2017.05.012
  • de Morais, C.R., Carvalho S.M., Naves M.P.C., Araujo G., de Rezende A.A.A., Bonetti A.M. et al. (2017). Mutagenic, recombinogenic and carcinogenic potential of thiamethoxam insecticide and formulated product in somatic cells of Drosophila melanogaster. Chemosphere. 187: 163-172. doi: 10.1016/j.chemosphere.2017.08.108
  • Vecchio, G. (2015). A fruit fly in the nanoworld: once again Drosophila contributes to environment and human health. Nanotoxicology. 9(2): 135-137. doi: 10.3109/17435390.2014.911985
  • Fragiorge, E.J., Spanó, M.A., Antunes, L.M.G. (2007). Modulatory effects of the antioxidant ascorbic acid on the direct genotoxicity of doxorubicin in somatic cells of Drosophila melanogaster. Genet Mol. Biol. 30: 449-455. doi: 10.1590/S1415-47572007000300025
  • Romero-Jiménez, M., Campos-Sánchez, J., Analla, M., Muñoz-Serrano, A., Alonso-Moraga, Á. (2005). Genotoxicity and anti-genotoxicity of some traditional medicinal herbs. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 585(1-2): 147-155. doi: 10.1016/j.mrgentox.2005.05.004
  • Doppalapudi, R.S., Riccio, E.S., Rausch, L.L., Shimon, J.A., Lee P.S., Mortelmans, KE. et al. (2007). Evaluation of chemopre-ventive agents for genotoxic activity. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 629(2): 148-160. doi: 10.1016/j.mrgentox.2007.02.004
  • Jiang, W., Lu, Y., Chen, Z., Chen, S., Zhang, M., Jin, L. et al. (2008). Studying the genotoxicity of vincristine on human lymphocytes using comet assay, micronucleus assay and TCR gene mutation test in vitro. Toxicology. 252(1-3): 113-117. doi: 10.1016/j.tox.2008.07.057
  • Antoccia, A., Degrassi, F., Battistoni, A., Ciliutti, P., Tanzarella, C. (1991). In vitro micronucleus test with kinetochore staining: evaluation of test performance. Mutagenesis. 6(4): 319-324. doi: 10.1093/mutage/6.4.319
  • Kothari, A., Hittelman, W.N., Chambers, T.C. (2016). Cell Cycle–Dependent Mechanisms Underlie Vincristine-Induced Death of Primary Acute Lymphoblastic Leukemia CellsVincristine-Induced Interphase Death in Leukemia Cells. Cancer Res. 76(12): 3553-3561. doi: 10.1158/0008-5472.CAN-15-2104
  • Mhaidat, N.M., Alzoubi, K.H., Khabour, O.F., Alawneh, K.Z., Raffee, L.A., Alsatari, E.S. et al. (2016). Assessment of genotoxicity of vincristine, vinblastine and vinorelbine in human cultured lymphocytes: A comparative study. Balkan Journal of Medical Genetics. 19(1): 13-20. doi: 10.1515/bjmg-2016-0002
  • Tiburi, M., Reguly, M.L., Schwartsmann, G., Cunha, K.S., Lehmann, M., de Andrade, H.H.R. (2002). Comparative genotoxic effect of vincristine, vinblastine, and vinorelbine in somatic cells of Drosophila melanogaster. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 519(1-2): 141-149. doi: 10.1016/S1383-5718(02)00136-5
  • Botella, P., Rivero-Buceta, E. (2017). Safe approaches for camptothecin delivery: Structural analogues and nanomedicines. Journal of Controlled Release. 247: 28-54. doi: 10.1016/j.jconrel.2016.12.023
  • Pérez-Chiesa, Y., Narváez, Z. (1993). Evaluation of genotoxicity of the indenoiso-quinoline analogues of fagaronine and nitidine in Drosophila melanogaster. Mutation Research Letters. 301(4): 207-212. doi: 10.1016/0165-7992(93)90059-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.