1,080
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Monitoring heterogeneous urban and rural area using Normalised Difference Infrared Index – a case study from SE Poland

ORCID Icon & ORCID Icon
Pages 308-321 | Received 09 Apr 2018, Accepted 04 Apr 2019, Published online: 18 Apr 2019

References

  • Albizua, L., Donezar, U., & Ibáñez, J.C. (2012). Monitoring urban development consolidation for regional management on water supply using remote sensing techniques. European Journal of Remote Sensing, 45, 283–292. doi:10.5721/EuJRS20124525
  • Bochenek, Z., Ziolkowski, D., Bartold, M., Orlowska, K., & Ochtyra, A. (2018). Monitoring forest biodiversity and the impact of climate on forest environment using high-resolution satellite images. European Journal of Remote Sensing, 51, 166–181. doi:10.1080/22797254.2017.1414573
  • BULiGL-BDL. (2018). Forest data bank, bureau for forest management and geodesy (https://www.bdl.lasy.gov.pl/portal/usluga-ogc-en)
  • Chandrasekar, K., Sesha Sai, M.V.R., Roy, P.S., & Dwevedi, R.S. (2010). Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS vegetation index product. International Journal of Remote Sensing, 31, 3987–4005. doi:10.1080/01431160802575653
  • Delbart, N., Kergoat, L., Le Toan, T., Lhermitte, J., & Picard, G. (2005). Determination of phenological dates in boreal regions using normalized difference water index. Remote Sensing of Environment, 97, 26–38. doi:10.1016/j.rse.2005.03.011
  • Dusseux, P., Vertès, F., Corpetti, T., Corgne, S., & Hubert-Moy, L. (2014). Agricultural practices in grasslands detected by spatial remote sensing. Environmental Monitoring Assessment, 186, 8249–8265. doi:10.1007/s10661-014-3973-5
  • EDO-JRC (2011). NDWI: Normalized Difference Water Index. Product Fact Sheet: NDWI – Europe, Version 1, 1–6. Retrieved from http://edo.jrc.ec.europa.eu/documents/factsheets/factsheet_ndwi.pdf.
  • Eurostat. (2014). Focus on European cities. In Eurostat regional yearbook 2014: Statistical books (pp. 287–304). Luxembourg: Publications Office of the European Union.
  • Eurostat. (2016). Urban Europe Statistics on cities, towns and suburbs: Statistical books (pp. 1–286). Luxembourg: Publications Office of the European Union.
  • Gao, B.-C. (1996). NDWI – A Normalized Difference Water Index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58, 257–266. doi:10.1016/S0034-4257(96)00067-3
  • Gu, Y., Brown, J.F., Verdin, J.P., & Wardlow, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central great plains of the United States. Geophysical Research Letters, 34, L06407. doi:10.1029/2006GL029127
  • Gu, Y., Hunt, E., Wardlow, B., Basara, J.B., Brown, J.F., & Verdin, J.P. (2008). Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophysical Research Letters, 35, L22401. doi:10.1029/2008GL035772
  • GUGiK-BDOO. (2017). General geographic database, head office of geodesy and cartography in Poland (http://www.codgik.gov.pl/index.php/darmowe-dane/bdo250gis.html, http://mapy.geoportal.gov.pl/wss/service/ATOM/httpauth/atom/CODGIK_BDOO)
  • GUS-BDL. (2018). Local data bank, central statistical office (https://bdl.stat.gov.pl/BDL/dane/teryt/jednostka)
  • Han, Q., Luo, G., & Li, C. (2013). Remote sensing-based quantification of spatial variation in canopy phenology of four dominant tree species in Europe. Journal of Applied Remote Sensing, 7(1), 073485. doi:10.1117/1.JRS.7.073485
  • Hardisky, M.A., Klemas, V., & Smart, R.M. (1983). The influences of soil salinity, growth form, and leaf moisture on the spectral reflectance of Spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing, 49(1), 77−83.
  • Herold, M., & Roberts, D.A. (2010). The spectral dimension in urban remote sensing. In T. Rashed & C. Jürgens (Eds.), Remote sensing and digital image processing: Vol. 10. Remote sensing of urban and suburban areas (pp. 47–65)). Dordrecht: Springer Netherlands.
  • Herold, M., Gardner, M., & Roberts, D.A. (2003). Spectral resolution requirements for mapping urban areas. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1907–1919. doi:10.1109/TGRS.2003.815238
  • Huang, J., Chen, D., & Cosh, M.H. (2009). Sub-pixel reflectance unmixing in estimating vegetation water content and dry biomass of corn and soybeans cropland using normalized difference water index (NDWI) from satellites. International Journal of Remote Sensing, 30(8), 2075–2104. doi:10.1080/01431160802549245
  • Huete, A.R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309. doi:10.1016/0034-4257(88)90106-X
  • Huete, A.R., & Justice, C. (1999). MODIS vegetation index (MOD13) algorithm theoretical basis document (Version 3). Retrieved from https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf
  • Hufkens, K., Friedl, M., Sonnentag, O., Braswell, B.H., Milliman, T., & Richardson, A.D. (2012). Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sensing of Environment, 117, 307–321. doi:10.1016/j.rse.2011.10.006
  • IMGW-PIB. (2018). Dane publiczne IMGW-PIB [Public data of IMGW-PIB] (https://dane.imgw.pl/data/dane_pomiarowo_obserwacyjne/dane_meteorologiczne/)
  • Irons, J.R., Dwyer, J.L., & Barsi, J.A. (2012). The next landsat satellite: The landsat data continuity mission. Remote Sensing of Environment, 122, 11–21. doi:10.1016/j.rse.2011.08.026
  • Jensen, J.R., & Cowen, D.C. (1999). Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogrammetric Engineering & Remote Sensing, 65(5), 611–622.
  • Ji, L., Zhang, L., Wylie, B.K., & Rover, J. (2011). On the terminology of the spectral vegetation index (NIR − SWIR)/(NIR+SWIR). International Journal of Remote Sensing, 32(21), 6901–6909. doi:10.1080/01431161.2010.510811
  • Jin, S., & Sader, S.A. (2005). MODIS time-series imagery for forest disturbance detection and quantification of patch size effects. Remote Sensing of Environment, 99, 462–470. doi:10.1016/j.rse.2005.09.017
  • Kaszewski, B.M., Mrugała, S., & Warakomski, W. (1995). Temperatura powietrza i opady atmosferyczne na obszarze Lubelszczyzny (1951–1990) [Air temperature and precipitation in the Lublin region (1951–1990)]. In S. Uziak & R. Turski (Eds.), Środowisko przyrodnicze Lubelszczyzny. Klimat [Natural environment of the Lublin region. Climate] (pp. 1–71). Lublin, Poland: Lubelskie Towarzystwo Naukowe.
  • Kaszewski, B.M., Michalczyk, Z., & Siwek, K. (2001). Klimatyczne uwarunkowania obiegu wody [Climatic conditions of the water cycle]. In Z. Michalczyk (Ed.), Badania Hydrograficzne w Poznawaniu Środowiska: Tom 6. Źródła Wyżyny Lubelskiej i Roztocza [hydrographic research in the studies of the environment: Vol. 6. Springs of the Lublin Upland and the Roztocze] (pp. 23–33). Lublin, Poland: Wydawnictwo UMCS.
  • Kotthaus, S., Smith, T.E.L., Wooster, M.J., & Grimmond, C.S.B. (2014). Derivation of an urban materials spectral library through emittance and reflectance spectroscopy. ISPRS Journal of Photogrammetry and Remote Sensing, 94, 194–212. doi:10.1016/j.isprsjprs.2014.05.005
  • Lobell, D.B., & Asner, G.P. (2002). Moisture effects on soil reflectance. Soil Science Society of America Journal, 66, 722–727. doi:10.2136/sssaj2002.7220
  • Mishra, N., Helder, D., Barsi, J., & Markham, B. (2016). Continuous calibration improvement in solar reflective bands: Landsat 5 through landsat 8. Remote Sensing of Environment, 185, 7–15. doi:10.1016/j.rse.2016.07.032
  • Nabielek, K., Hamers, D., & Evers, D. (2016). Cities in Europe. The Hague: PBL Netherlands Environmental Assessment Agency.
  • Rashed, T., Weeks, J.R., Gadalla, M.S., & Hill, A. (2001). Revealing the anatomy of cities through spectral mixture analysis of multispectral imagery: A case study of the Greater Cairo region, Egypt. Geocarto International, 16(4), 5–16. doi:10.1080/10106040108542210
  • USGS (2016). Landsat 8 (L8) data users handbook. Version 2.0. Retrieved from https://landsat.usgs.gov/sites/default/files/documents/Landsat8DataUsersHandbook.pdf.
  • Wu, C., Gonsamo, A., Gough, C.M., Chen, J.M., & Xu, S. (2014). Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS. Remote Sensing of Environment, 147, 79–88. doi:10.1016/j.rse.2014.03.001
  • Yilmaz, M.T., Hunt, E.R., Jr, & Jackson, T.J. (2008). Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sensing of Environment, 112, 2514–2522. doi:10.1016/j.rse.2007.11.014
  • Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., … Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84, 471–475. doi:10.1016/S0034-4257(02)00135-9
  • Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., & Schneider, A. (2004). The footprint of urban climates on vegetation phenology. Geophysical Research Letters, 31, L12209. doi:10.1029/2004GL020137
  • Zhumanova, M., Mönnig, C., Hergarten, C., Darr, D., & Wrage-Mönnig, N. (2018). Assessment of vegetation degradation in mountainous pastures of the Western Tien-Shan, Kyrgyzstan, using eMODIS NDVI. Ecological Indicators, 95, 527–543. doi:10.1016/j.ecolind.2018.07.060