4,997
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Earth observation tools and services to increase the effectiveness of humanitarian assistance

ORCID Icon, , , , ORCID Icon, ORCID Icon, , , , , , , , & show all
Pages 67-85 | Received 15 Dec 2018, Accepted 21 Oct 2019, Published online: 30 Oct 2019

References

  • Al Achkar, Z., Baker, I.L., Card, B., & Rayomond, N.A. (2015). Satellite imagery interpretation guide: Intentional burning of tukuls. Cambridge, MA: Harvard Humanitarian Initiative.
  • Albuquerque, J.P., Herfort, B., & Eckle, M. (2016). The tasks of the crowd: A typology of tasks in geographic information crowdsourcing and a case study in humanitarian mapping. Remote Sensing, 8(10), 859. doi:10.3390/rs8100859
  • Almeida, C.M., Oliveira, C.G., Rennó, C.D., & Feitosa, R.Q. (2011). Population estimates in informal settlements using object-based image analysis and 3D modeling. IEEE Earthzine, 16.
  • Augustin, H., Sudmanns, M., Tiede, D., & Baraldi, A. (2018). A semantic Earth observation data cube for monitoring environmental changes during the Syrian conflict. GI Forum - Journal for Geographic Information Science, 1, 214–227.
  • Baraldi, A. (2011). Satellite Image Automatic Mapper™ (SIAM™). A turnkey software button for automatic near-real-time multi-sensor multi-resolution spectral rule-based preliminary classification of spaceborne multi-spectral images. Recent Patents on Space Technology, (1), 81–106. doi:10.2174/1877611611101020081
  • Bjorgo, E. (2000). Refugee camp mapping using very high spatial resolution satellite sensor images. Geocarto International, 15(2), 79–88. doi:10.1080/10106049908542156
  • Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., … Tiede, D. (2014). Geographic object-based image analysis: A new paradigm in remote sensing and geographic information science. ISPRS Journal of Photogrammetry and Remote Sensing, 87(1), 180–191. doi:10.1016/j.isprsjprs.2013.09.014
  • Braun, A. (2018). Assessment of building damage in Raqqa during the Syrian civil war using time-series of radar satellite imagery. GI Forum - Journal for Geographic Information Science, 1/2018, 228–242.
  • Braun, A. (2019). Radar satellite imagery for humanitarian response - bridging the gap between technology and application. Tübingen: University of Tübingen.
  • Braun, A., Lang, S., & Hochschild, V. (2016). Impact of refugee camps on their environment - a case study using multi-temporal SAR data. Journal of Geography, Environment and Earth Science International, 4(2), 1–17. doi:10.9734/JGEESI
  • Campbell, J.B. (2002). Introduction to remote sensing. New York: The Guilford Press.
  • Center for International Earth Science Information Network (CIESIN). (2016). Gridded population of the World, Version 4 (GPWv4). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).
  • Checchi, F., Stewart, B.T., Palmer, J.J., & Grundy, C. (2013). Validity and feasibility of a satellite imagery-based method for rapid estimation of displaced populations. International Journal of Health Geographics, 12(4), 1–12. doi:10.1186/1476-072X-12-4
  • Chen, J., Zhou, Y., Zipf, A., & Fan, H. (2018). Deep learning from multiple crowds: A case study of humanitarian mapping. IEEE Transactions on Geoscience and Remote Sensing 57(3): 1713-1722.
  • Denis, G., de Boissezon, H., Hosford, S., Pasco, X., Montfort, B., & Ranera, F. (2016). The evolution of Earth observation satellites in Europe and its impact on the performance of emergency response services. Acta Astronautica, 127, 619–633. doi:10.1016/j.actaastro.2016.06.012
  • Di Gregorio, A., & Jansen, L.J.M. (2005). Land cover classification system (LCCS): Classification concepts and user manual. Rome: Food and Agriculture Organisation (FAO).
  • Ehrlich, D., Lang, S., Laneve, G., Mubareka, S., Schneiderbauer, S., & Tiede, D. (2009). Can Earth observation help to improve information on population? Indirect population estimations from EO derived geospatial data. In B. Jasani, M. Pesaresi, S. Schneiderbauer, & G. Zeug (Eds.), Remote sensing from space supporting international peace and security (pp. 211–237). Berlin: Springer.
  • Elia, A., Balbo, S., & Boccardo, P. (2018). A quality comparison between professional and crowdsourced data in emergency mapping for potential cooperation of the services. European Journal of Remote Sensing, 51(1), 572–586. doi:10.1080/22797254.2018.1460567
  • Elwood, S. (2008). Volunteered geographic information: Key questions, concepts and methods to guide emerging research and practice. GeoJournal, 72, 133–135. doi:10.1007/s10708-008-9187-z
  • European Commission. (2015). Copernicus emergency management service mapping manual of operational procedures. Brussels: DG GROW, DG ECHO & DG JRC.
  • European Commission, Joint Research Centre (JRC), & Center for International Earth Science Information Network (CIESIN). (2015). GHS population grid, derived from GPW4, multitemporal (1975, 1990, 2000, 2015).
  • European Parliament & Council. (2014). Regulation (EU) No 377/2014 establishing the Copernicus Programme and repealing.
  • Füreder, P., Lang, S., Hagenlocher, M., Tiede, D., Wendt, L., & Rogenhofer, E. (2015). Earth observation and GIS to support humanitarian operations in refugee/IDP camps. In B. Palen, Comes, & Hughes (Eds.), Geospatial Data and Geographical Information Science - Proceedings of the ISCRAM 2015 Conference. Kristiansand.
  • Füreder, P., Lang, S., Rogenhofer, E., Tiede, D., & Papp, A. (2015). Monitoring displaced people in crisis situations using multi-temporal VHR satellite data during humanitarian operations in South Sudan. In A. Car, T. Jekel, J. Strobl, & G. Griesebner (Eds.), GI_Forum 2015 – Geospatial minds for society (pp. 391–401). Vienna: Verlag der Österreichischen Akademie der Wissenschaften.
  • German Aerospace Center (DLR). (2016). Global Urban Footprint (GUF) - TSX/TDX - Global. Retrieved from http://g.gdk99ffm.testbed.gdi-de.org/geonetwork/srv/api/records/5fd5bf46-ba85-4672-a4d0-76f322c69201.
  • Ghorbanzadeh, O., Tiede, D., Dabiri, Z., Sudmanns, M., & Lang, S. (2018). Dwelling extraction in refugee camps using CNN - first experiences and lessons learnt. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII(1), 161–168. doi:10.5194/isprs-archives-XLII-1-161-2018
  • Giada, S., de Groeve, T., & Ehrlich, D. (2003). Information extraction from very high resolution satellite imagery over Lukole refugee camp, Tanzania. International Journal of Remote Sensing, 24(22), 4251–4266. doi:10.1080/0143116021000035021
  • Grundy, C., Füreder, P., Siddique, R., Katsuva Sibongwe, D., Tiede, D., Lang, S., & Checchi, F. (2012) Validation of satellite imagery methods to estimate population size. Paper presented at the MSF Scientific Day, London.
  • Hagenlocher, M., Lang, S., & Tiede, D. (2012). Integrated assessment of the environmental impact of an IDP camp in Sudan based on very high resolution multi-temporal satellite imagery. Remote Sensing of Environment, 126, 27–38. doi:10.1016/j.rse.2012.08.010
  • Harvard Humanitarian Initiative. (2015). Annual report 2015. Technical report. Retrieved from https://hhi.harvard.edu/sites/default/files/hhi_year_end_report_2015_web.pdf
  • Hofmann, P., Taubenböck, H., & Werthmann, C. (2015). Monitoring and modelling of informal settlements – A review on recent developments and challenges. Paper presented at the Joint Urban Remote Sensing Event (JURSE 2015), Lausanne, Switzerland.
  • Hu, X., Zhang, Z., & Tao, C. (2004). A robust method for semi-automatic extraction of road centerlines using a piecewise parabolic model and least square template matching. Photogrammetric Engineering & Remote Sensing, 70(12), 1393–1398. doi:10.14358/PERS.70.12.1393
  • Jiang, W., He, G., Long, T., & Liu, H. (2017). Ongoing conflict makes Yemen dark: From the perspective of nighttime light. Remote Sensing, 9(8), 798. doi:10.3390/rs9080798
  • Kelly, C. (1998). Bridging the gap: Remote sensing and needs assessment—A field experience with displaced populations. Safety Science, 30, 123–129. doi:10.1016/S0925-7535(98)00040-X
  • Kemper, T., & Heinzel, J. (2014). Mapping and monitoring of refugees and internally displaced people using EO data. In Q. Weng (Ed.), Global urban monitoring and assessment through earth observation (pp. 195–216). Boca Raton: CRC Press.
  • Kemper, T., Jenerowicz, M., Gueguen, L., & Poli, D. (2011). Monitoring changes in the Menik Farm IDP camps in Sri Lanka using multi-temporal very high-resolution satellite data. International Journal of Digital Earth, 4, 91–106. doi:10.1080/17538947.2010.512430
  • Kranz, O., Sachs, A., & Lang, S. (2015). Assessment of environmental changes induced by internally displaced person (IDP) camps in the Darfur region, Sudan, based on multi-temporal MODIS data. International Journal of Remote Sensing, 36(1), 190–210. doi:10.1080/01431161.2014.999386
  • Kulessa, K., & Lang, S. (2016). 3D object-based feature extraction from 3-stereo DSM in urban context. Twente: GEOBIA 2016: Solutions and Synergies.
  • Laneve, G., Santilli, G., & Lingenfelder, I. (2006). Development of automatic techniques for refugee camps monitoring using very high spatial resolution (VHSR) satellite imagery. IGARSS Conference, Denver, Colorado.
  • Lang, S., Füreder, P., Kranz, O., Card, B., Roberts, S., & Papp, A. (2015). Humanitarian emergencies: Causes, traits and impacts as observed by remote sensing. In P. Thenkabail (Ed.), Remote sensing handbook (Vol. III, pp. 483–512). Water Resources, Disasters, and Urban. New York: Taylor and Francis.
  • Lang, S., Füreder, P., & Rogenhofer, E. (2018). Earth observation for humanitarian operations. In C. Al-Ekabi & S. Ferretti (Eds.), Yearbook on Space policy 2016 “Space for sustainable development” (pp. 217–229). Berlin: Springer.
  • Lang, S., Schoepfer, E., Zeil, P., & Riedler, B. (2017). Earth observation for humanitarian assistance. GI Forum - Journal for Geographic Information Science, 1/2017, 157–165.
  • Lang, S., Tiede, D., Hölbling, D., Füreder, P., & Zeil, P. (2010). EO-based ex-post assessment of IDP camp evolution and population dynamics in Zam Zam, Darfur. International Journal of Remote Sensing, 31(21), 5709–5731. doi:10.1080/01431161.2010.496803
  • Lüthje, F., Tiede, D., & Eisank, C. (2014). Object-based DTM generation from VHR stereo imagery derived DSM data sets. South-Eastern European Journal of Earth Observation and Geomatics, 3, 109–113.
  • Oak Ridge National Laboratory. 2019. Landscan 2000 Global population database. Retrieved from http://sedac.ciesin.columbia.edu/plue/gpw/landscan.
  • Puissant, A., Zhang, W., & Skupinski, G. (2012). Urban morphology analysis by high and very high spatial resolution remote sensing. - Rio de Janeiro - Brazil. Proceedings of the 4th GEOBIA, Rio de Janeiro.
  • Quinn, J.A., Nyhan, M.M., Navarro, C., Coluccia, D., Bromley, L., & Luengo-Oroz, M. (2018). Humanitarian applications of machine learning with remote-sensing data: Review and case study in refugee settlement mapping. Philosophical Transactions of the Royal Society A, 376(2128). doi:10.1098/rsta.2017.0363
  • Riedler, B., Bäuerl, M., Wendt, L., Kulessa, K., & Öze, A. (2017). Remote sensing applications to support rehabilitation of water infrastructure in Lapilang, Nepal. GI Forum - Journal for Geographic Information Science, 2017(1), 183–198. doi:10.1553/giscience2017_01_s183
  • SBTF. (2011). Crowdsourcing satellite imagery analysis for UNHCR-Somalia: Latest results. http://blog.standbytaskforce.com/2011/11/10/unhcr-somalia-latest-results/
  • School of Geography and Environmental Science - Univ Southampton, Dept of Geography and Geosciences - Univ Louisville, Dept de Geographie - Univ Namur, & Center for International Earth Science Information Network (CIESIN). (2018). WorldPop - Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076).
  • Schörghofer, R., Lang, S., Wendt, L., & Riedler, B. (2017). CMaP - collaborative mapping platform for humanitarian organisations. GI Forum - Journal for Geographic Information Science, 1/2017, 207–216.
  • Spröhnle, K., Fuchs, E.M., & Pelizari, P.A. (2017). Object-based analysis and fusion of optical and SAR satellite data for dwelling detection in refugee camps. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 99, 1–12.
  • Spröhnle, K., Tiede, D., Schoepfer, E., Füreder, P., Svanberg, A., & Rost, T. (2014). Earth observation-based dwelling detection approaches in a highly complex refugee camp environment — A comparative study. Remote Sensing, 6(10), 9277–9297. doi:10.3390/rs6109277
  • Stängel, M., Tiede, D., Lüthje, F., Füreder, P., & Lang, S. (2014). Object-based image analysis using VHR satellite imagery for monitoring the dismantling of a refugee camp after a crisis: The case of Lukole, Tanzania. In R. Vogler, A. Car, J. Strobl, & G. Griesebner (Eds.), GI_Forum 2014. Geospatial innovation for society (pp. 45–48). Wien/Berlin: Verlag der Österreichischen Akademie der Wissenschaften/VDE Verlag GmbH.
  • Stevens, F.R., Gaughan, A.E., Linard, C., & Tatem, A.J. (2015). Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PloS One, 10(2), e0107042. doi:10.1371/journal.pone.0107042
  • Sudmanns, M., Tiede, D., Wendt, L., & Baraldi, A. (2017). Automatic ex-post flood assessment using long time series of optical Earth observation images. GI Forum - Journal for Geographic Information Science, 2017/1, 217–227. doi:10.1553/giscience2017_01_s217
  • Tiede, D., Baraldi, A., Sudmanns, M., Belgiu, M., & Lang, S. (2017). Architecture and prototypical implementation of a semantic querying system for big Earth observation image bases. European Journal of Remote Sensing, 50, 452–463. doi:10.1080/22797254.2017.1357432
  • Tiede, D., Füreder, P., Lang, S., Hölbling, D., & Zeil, P. (2013). Automated analysis of satellite imagery to provide information products for humanitarian relief operations in refugee camps – From scientific development towards operational services. PFG Photogrammetrie - Fernerkundung - Geoinformation, 3, 185–195. doi:10.1127/1432-8364/2013/0169
  • Tiede, D., Krafft, P., Füreder, P., & Lang, S. (2017). Stratified template matching to support refugee camp analysis in OBIA workflows. Remote Sensing, 9(326), 326. doi:10.3390/rs9040326
  • UNHCR. (2017). Global Trends: Forced Displacement iin 2017. http://www.unhcr.org/5b27be547.pdf
  • United Nations. (2014). World Urbanization Prospects: The 2014 revision: Highlights; ST/ESA/SER.A/352. United Nations: New York.
  • Voigt, S., Giulio-Tonolo, F., Lyons, J., Kučera, J., Jones, B., Schneiderhan, T., … Guha-Sapir, D. (2016). Global trends in satellite-based emergency mapping. Science, 253(6296), 247–252. doi:10.1126/science.aad8728
  • Voigt, S., Kemper, T., Riedlinger, T., Kiefl, R., Scholte, K., & Mehl, H. (2007). Satellite image analysis for disaster and crisis-management support. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1520–1528. doi:10.1109/TGRS.2007.895830
  • Voigt, S., Schoepfer, E., Fourie, C., & Mager, A. (2014). Towards semi-automated satellite mapping for humanitarian situational awareness. San Jose, CA: Global Humanitarian Technology Conference (GHTC).
  • Wendt, L., Hilberg, S., Robl, J., Hochschild, V., Rogenhofer, E., Füreder, P., … Zeil, P. (2014). Assisting the exploration of groundwater near refugee/IDP camps using remote sensing and GIS. Gemeinsame Tagung 2014 der DGfK, der DGPF, der GfGI und des GiN, Hamburg.
  • Wendt, L., Lang, S., & Rogenhofer, E. (2017). Monitoring of refugee and IDP camps with Sentinel 2 imagery – A feasibility study. GI Forum - Journal for Geographic Information Science, 1/2017, 172–182.
  • Witmer, F.D.W., & O’Loughlin, J. (2011). Detecting the effects of wars in the caucasus regions of Russia and Georgia using radiometrically normalized DMSP-OLS nighttime lights imagery. Remote Sensing, 48, 478–500. doi:10.2747/1548-1603.48.4.478
  • Zeil, P., Ourevitch, S., Debien, A., & Pico, U. (2017). The copernicus user uptake – Copernicus relays and copernicus academy. GI Forum - Journal for Geographic Information Science, (1), 253–259.
  • Zhu, X.X., Tuia, D., Mou, L., Xia, G.S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep learning in remote sensing - a review. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8–36. doi:10.1109/MGRS.2017.2762307