2,573
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Transferable instance segmentation of dwellings in a refugee camp - integrating CNN and OBIA

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 127-140 | Received 25 Nov 2019, Accepted 20 Apr 2020, Published online: 06 May 2020

References

  • Baatz, M., & Schaepe, A. (2000). Multiresolution segmentationan optimization approach for high quality multi-scale segmentation. In J. Strobl, T. Blaschke, & G. Griesebner (Eds.), Angewandte Geographische Informationsverarbeitung XII (pp. 1223). Wichmann Verlag, Heidelberg.
  • Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004
  • Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R. Q., Van der Meer, F., Van der Werff, H., & Van Coillie, F. (2014). Geographic object-based image analysis–towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 180–191. https://doi.org/10.1016/j.isprsjprs.2013.09.014
  • Blaschke, T., & Piralilou, S. T. (2018) The near-decomposability paradigm re-interpreted for place-based GIS. 1st workshop on platial analysis (PLATIAL’18) (pp. 20–21), Heidelberg, Germany.
  • Castelluccio, M., Poggi, G., Sansone, C., & Verdoliva, L. (2015). Land use classification in remote sensing images by convolutional neural networks. arXiv Preprint arXiv:1508.00092(pp, 1-11.).
  • Dai, J., He, K., & Sun, J. (2016) Instance-aware semantic segmentation via multi-task network cascades. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3150–3158).  Las Vegas, Nevada.
  • Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., & Raska, R. (2018) Deepglobe 2018: A challenge to parse the earth through satellite images. 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW) (pp. 172–17209), IEEE, Salt Lake City.
  • Du, Z., Yang, J., Ou, C., & Zhang, T. (2019). Smallholder crop area mapped with a semantic segmentation deep learning method. Remote Sensing, 11(7), 888. https://doi.org/10.3390/rs11070888
  • Fu, Y., Ye, Z., Deng, J., Zheng, X., Huang, Y., Yang, W., Wang, Y., & Wang, K. (2019). Finer resolution mapping of marine aquaculture areas using worldView-2 imagery and a hierarchical cascade convolutional neural network. Remote Sensing, 11(14), 1678. https://doi.org/10.3390/rs11141678
  • Ghorbanzadeh, O., & Blaschke, T. (2019) Optimizing sample patches selection of CNN to improve the mIOU on landslide detection. Proceedings of the 5th international conference on geographical information systems theory, applications and management: GISTAM, 1, (pp. 8). Heraklion, Crete, Greece. https://doi.org/http://dx.doi.10.5220/0007675300330040.
  • Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S. R., Tiede, D., & Aryal, J. (2019). Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sensing, 11(2), 196. https://doi.org/10.3390/rs11020196
  • Ghorbanzadeh, O., Tiede, D., Dabiri, Z., & Lang, S. (2018a). Dwelling extraction from satellite imagery in refugee camps: How different sample datasets impact the results of convolutional neural networks (CNN)?. Poster presentation GI_Forum 2018 conference, Salzburg, Austria.
  • Ghorbanzadeh, O., Tiede, D., Dabiri, Z., Sudmanns, M., & Lang, S. (2018b). Dwelling extraction in refugee camps using cnn-first experiences and lessons learnt. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42(1), 161-166.. https://pdfs.semanticscholar.org/71bb/37579f70e18de4596a38084a71c274311522.pdf
  • Grundy, C., Füreder, P., Siddiqui, R., Katsuva Sibongwe, D., Tiede, D., Lang, S., & Checci, F. 2012. Validation of satellite imagery methods to estimate population size. MSF Scientific Day. 25
  • Guirado, E., Tabik, S., Alcaraz-Segura, D., Cabello, J., & Herrera, F. (2017). Deep-learning convolutional neural networks for scattered shrub detection with google earth imagery. arXiv Preprint arXiv:1706.00917, 1-23.
  • Han, X., Zhong, Y., Zhao, B., & Zhang, L. (2017). Scene classification based on a hierarchical convolutional sparse auto-encoder for high spatial resolution imagery. International Journal of Remote Sensing, 38(2), 514–536. https://doi.org/10.1080/01431161.2016.1266059
  • Hang, R., Liu, Q., Hong, D., & Ghamisi, P. (2019). Cascaded recurrent neural networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 5384-5394. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8662780
  • Hu, F., Xia, G.-S., Hu, J., & Zhang, L. (2015). Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sensing, 7(11), 14680–14707. https://doi.org/10.3390/rs71114680
  • Iglovikov, V., Seferbekov, S. S., Buslaev, A., & Shvets, A. (2018) TernausNetV2: Fully convolutional network for instance, segmentation. CVPR Workshops (pp. 233–237). Salt Lake City, Utah.
  • Jin, B., Ye, P., Zhang, X., Song, W., & Li, S. (2019). Object-oriented method combined with deep convolutional neural networks for land-use-type classification of remote sensing images. Journal of the Indian Society of Remote Sensing, 47(6), 951–965. https://doi.org/10.1007/s12524-019-00945-3
  • Jozdani, S. E., Johnson, B. A., & Chen, D. (2019). Comparing deep neural networks, ensemble classifiers, and support vector machine algorithms for object-based urban land use/land cover classification. Remote Sensing, 11(14), 1713. https://doi.org/10.3390/rs11141713
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012) Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems (pp. 1097–1105). Lake Tahoe, Nevada, USA.
  • Laneve, G., Santilli, G., & Lingenfelder, I. (2006) Development of automatic techniques for refugee camps monitoring using very high spatial resolution (VHSR) satellite imagery. 2006 IEEE international symposium on geoscience and remote sensing (pp. 841–845). IEEE, Denver, CO, USA.
  • Lang, S., Füreder, P., Riedler, B., Wendt, L., Braun, A., Tiede, D., Schoepfer, E., Zeil, P., Spröhnle, K., & Kulessa, K. (2019a). Earth observation tools and services to increase the effectiveness of humanitarian assistance. European Journal of Remote Sensing, 1–19. https://doi.org/10.1080/22797254.2019.1684208
  • Lang, S., Hay, G. J., Baraldi, A., Tiede, D., & Blaschke, T. (2019b). Geobia achievements and spatial opportunities in the era of big earth observation data. ISPRS International Journal of Geo-Information, 8(11), 474. https://doi.org/10.3390/ijgi8110474
  • Lang, S., Tiede, D., Hölbling, D., Füreder, P., & Zeil, P. (2010). Earth observation (EO)-based ex post assessment of internally displaced person (IDP) camp evolution and population dynamics in Zam Zam, Darfur. International Journal of Remote Sensing, 31(21), 5709–5731. https://doi.org/10.1080/01431161.2010.496803
  • Li, H., Zhang, C., Zhang, S., & Atkinson, P. M. (2019). A hybrid OSVM-OCNN method for crop classification from fine spatial resolution remotely sensed imagery. Remote Sensing, 11(20), 2370. https://doi.org/10.3390/rs11202370
  • Lin, Z., Lanchantin, J., & Qi, Y. (2016) MUST-CNN: A multilayer shift-and-stitch deep convolutional architecture for sequence-based protein structure prediction. Thirtieth AAAI conference on artificial intelligence. Phoenix, Arizona USA.
  • Liu, S., Qi, Z., Li, X., & Yeh, A. G.-O. (2019). Integration of convolutional neural networks and object-based post-classification refinement for land use and land cover mapping with optical and SAR data. Remote Sensing, 11(6), 690. https://doi.org/10.3390/rs11060690
  • Liu, T., & Abd-Elrahman, A. (2018). Deep convolutional neural network training enrichment using multi-view object-based analysis of unmanned aerial systems imagery for wetlands classification. ISPRS Journal of Photogrammetry and Remote Sensing, 139, 154–170. https://doi.org/10.1016/j.isprsjprs.2018.03.006
  • Liu, T., Yang, L., & Lunga, D. D. (2019) Towards misregistration-tolerant change detection using deep learning techniques with object-based image analysis. Proceedings of the 27th ACM SIGSPATIAL international conference on advances in geographic information systems (pp. 420–423). Chicago, Illinois, USA.
  • Lüthje, F., Tiede, D., & Füreder, P. (2015) Don’t see the dwellings for the trees: Quantifying the effect of tree growth on multi-temporal dwelling extraction in a refugee camp. Proceedings of the GI_Forum, Salzburg, Austria.
  • Lv, X., Ming, D., Lu, T., Zhou, K., Wang, M., & Bao, H. (2018). A new method for region-based majority voting CNNs for very high resolution image classification. Remote Sensing, 10(12), 1946. https://doi.org/10.3390/rs10121946
  • Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017). Convolutional neural networks for large-scale remote-sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 645–657. https://doi.org/10.1109/TGRS.2016.2612821
  • Pan, X., Zhao, J., & Xu, J. (2019). An object-based and heterogeneous segment filter convolutional neural network for high-resolution remote sensing image classification. International Journal of Remote Sensing, 40(15), 5892–5916. https://doi.org/10.1080/01431161.2019.1584687
  • Panboonyuen, T., Jitkajornwanich, K., Lawawirojwong, S., Srestasathiern, P., & Vateekul, P. (2019). Semantic segmentation on remotely sensed images using an enhanced global convolutional network with channel attention and domain specific transfer learning. Remote Sensing, 11(1), 83. https://doi.org/10.3390/rs11010083
  • Pena, J., Tan, Y., & Boonpook, W. (2019). Semantic segmentation based remote sensing data fusion on crops detection. Journal of Computer and Communications, 7(7), 53-64.
  • Qayyum, A., Malik, A., Saad, M. N., & Mazher, M. (2019). Designing deep CNN models based on sparse coding for aerial imagery: A deep-features reduction approach. European Journal of Remote Sensing, 52(1), 221–239. https://doi.org/10.1080/22797254.2019.1581582
  • Quinn, J. A., Nyhan, M. M., Navarro, C., Coluccia, D., Bromley, L., & Luengo-Oroz, M. (2018). Humanitarian applications of machine learning with remote-sensing data: Review and case study in refugee settlement mapping. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2128), 20170363. https://doi.org/10.1098/rsta.2017.0363
  • Radoux, J., & Bogaert, P. (2017). Good practices for object-based accuracy assessment. Remote Sensing, 9(7), 646. https://doi.org/10.3390/rs9070646
  • Radovic, M., Adarkwa, O., & Wang, Q. (2017). Object recognition in aerial images using convolutional neural networks. Journal of Imaging, 3(2), 21. https://doi.org/10.3390/jimaging3020021
  • Sameen, M. I., & Pradhan, B. (2019). Landslide detection using residual networks and the fusion of spectral and topographic information. IEEE Access, 7, 114363–114373. https://doi.org/10.1109/ACCESS.2019.2935761
  • Spröhnle, K., Tiede, D., Schoepfer, E., Füreder, P., Svanberg, A., & Rost, T. (2014). Earth observation-based dwelling detection approaches in a highly complex refugee camp environment—a comparative study. Remote Sensing, 6(10), 9277–9297. https://doi.org/10.3390/rs6109277
  • Tavakkoli Piralilou, S., Shahabi, H., Jarihani, B., Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S. R., & Aryal, J. (2019). Landslide detection using multi-scale image segmentation and different machine learning models in the higher himalayas. Remote Sensing, 11(21), 2575. https://doi.org/10.3390/rs11212575
  • Tiede, D., Krafft, P., Füreder, P., & Lang, S. (2017). Stratified template matching to support refugee camp analysis in OBIA workflows. Remote Sensing, 9(4), 326. https://doi.org/10.3390/rs9040326
  • Tiede, D., Lang, S., Hölbling, D., & Füreder, P. (2010). Transferability of OBIA rulesets for IDP camp analysis in darfur.
  • UNHCR. (2019). Global trends: Forced displacement in 2018. The UN Refugee Agency.
  • Wendt, L., Lang, S., & Rogenhofer, E. (2017) Monitoring of refugee and camps for internally displaced persons using sentinel-2 imagery–a feasibility study. GI_Forum 2017, 5, (pp. 172–182). Salzburg, Austria.
  • Witmer, F. D. (2015). Remote sensing of violent conflict: Eyes from above. International Journal of Remote Sensing, 36(9), 2326–2352. https://doi.org/10.1080/01431161.2015.1035412
  • Yang, H. L., Lunga, D., & Yuan, J. (2017) Toward country scale building detection with convolutional neural network using aerial images. Geoscience and remote sensing symposium (IGARSS), 2017 IEEE International (pp. 870–873), IEEE, Texas, USA.
  • Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., & Atkinson, P. M. (2018). An object-based convolutional neural network (OCNN) for urban land use classification. Remote Sensing of Environment, 216, 57–70. https://doi.org/10.1016/j.rse.2018.06.034
  • Zhang, G., Zhang, R., Zhou, G., & Jia, X. (2018). Hierarchical spatial features learning with deep CNNs for very high-resolution remote sensing image classification. International Journal of Remote Sensing, 39(18), 5978–5996. https://doi.org/10.1080/01431161.2018.1506593
  • Zhao, W., Bo, Y., Chen, J., Tiede, D., Thomas, B., & Emery, W. J. (2019). Exploring semantic elements for urban scene recognition: Deep integration of high-resolution imagery and OpenStreetMap (OSM). ISPRS Journal of Photogrammetry and Remote Sensing, 151, 237–250. https://doi.org/10.1016/j.isprsjprs.2019.03.019
  • Zhao, W., Du, S., & Emery, W. J. (2017). Object-based convolutional neural network for high-resolution imagery classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(7), 3386–3396. https://doi.org/10.1109/JSTARS.2017.2680324
  • Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8–36. https://doi.org/10.1109/MGRS.2017.2762307