2,091
Views
0
CrossRef citations to date
0
Altmetric
Articles

Improving LSMA for impervious surface estimation in an urban area

ORCID Icon, , , &
Pages 37-51 | Received 24 Jun 2021, Accepted 11 Dec 2021, Published online: 05 Jan 2022

References

  • Arnold, C. L., Jr, & Gibbons, C. J. (1996). Impervious surface coverage: The emergence of a key environmental indicator. Journal of the American Planning Association, 62(2), 243–258. https://doi.org/10.1080/01944369608975688
  • Bauer, M. E., Loffelholz, B. C., & Wilson, B. (2007). Estimating and mapping impervious surface area by regression analysis of Landsat imagery. In Q. Weng (Ed.), Remote sensing of impervious surfaces (pp. 3–19). CRC Press.
  • Cao, S., Hu, D., Zhao, W., Mo, Y., Yu, C., & Zhang, Y. (2019). Monitoring changes in the impervious surfaces of urban functional zones using multisource remote sensing data: A case study of Tianjin, China. GIScience & Remote Sensing, 56(7), 967–987. https://doi.org/10.1080/15481603.2019.1600110
  • Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014
  • Civco, D. L., Hurd, J. D., Wilson, E. H., Arnold, C. L., & Prisloe, M. P. (2002). Quantifying and describing urbanizing landscapes in the northeast United States. Photogrammetric Engineering and Remote Sensing, 68(10), 1083–1090 https://trid.trb.org/view/727236.
  • Clapham, W. B., Jr. (2003). Continuum-based classification of remotely sensed imagery to describe urban sprawl on a watershed scale. Remote Sensing of Environment, 86(3), 322–340. https://doi.org/10.1016/S0034-4257(03)00076-2
  • Deng, C., & Zhu, Z. (2020). Continuous subpixel monitoring of urban impervious surface using Landsat time series. Remote Sensing of Environment, 238, 2020, 110929. https://doi.org/10.1016/j.rse.2018.10.011
  • Dennison, P. E., Halligan, K. Q., & Roberts, D. A. (2004). A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sensing of Environment, 93(3), 359–367. https://doi.org/10.1016/j.rse.2004.07.013
  • Dicembre, A., & Ricci, S. (2011). Railway traffic on high density urban corridors: Capacity, signalling and timetable. Journal of Rail Transport Planning & Management, 1(2), 59–68. https://doi.org/10.1016/j.jrtpm.2011.11.001
  • Elvidge, C. D., Tuttle, B. T., Sutton, P. C., Baugh, K. E., Howard, A. T., Milesi, C., Bhaduri, B., & Nemani, R. (2007). Global distribution and density of constructed impervious surfaces. Sensors, 7(9), 1962–1979. https://doi.org/10.3390/s7091962
  • Esch, T., Himmler, V., Schorcht, G., Thiel, M., Wehrmann, T., Bachofer, F., Conrad, C., Schmidt, M., & Dech, S. (2009). Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data. Remote Sensing of Environment, 113(8), 1678–1690. https://doi.org/10.1016/j.rse.2009.03.012
  • Fan, F., & Deng, Y. (2014). Enhancing endmember selection in multiple endmember spectral mixture analysis (MESMA) for urban impervious surface area mapping using spectral angle and spectral distance parameters. International Journal of Applied Earth Observation and Geoinformation, 33, 2014, 290–301. https://doi.org/10.1016/j.jag.2014.06.011
  • Fu, H., Shao, Z., Tu, C., & Zhang, Q. (2016). Impacts of feature selection for urban impervious surface extraction using optical image and SAR data. (Ed.), (Eds.). 2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA) Guangzhou, China: IEEE.
  • Hao, P., Niu, Z., Zhan, Y., Wu, Y., Wang, L., & Liu, Y. (2016). Spatiotemporal changes of urban impervious surface area and land surface temperature in Beijing from 1990 to 2014. GIScience & Remote Sensing, 53(1), 63–84. https://doi.org/10.1080/15481603.2015.1095471
  • Hsieh, P. F., Lee, L. C., & Chen, N. Y. (2001). Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing. IEEE Transactions On Geoscience and Remote Sensing, 39(12), 2657–2663. https://doi.org/10.1109/36.975000.
  • Hu, X., & Weng, Q. (2009). Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sensing of Environment, 113(10), 2089–2102. https://doi.org/10.1016/j.rse.2009.05.014
  • Hui, E. C. M., & Yu, K. H. (2013). Commuting patterns of residents within a high-density urban development: A study of Hong Kong. Habitat International, 39(2013), 201–213. https://doi.org/10.1016/j.habitatint.2012.12.008
  • Im, J., Lu, Z., Rhee, J., & Quackenbush, L. J. (2012). Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data. Remote Sensing of Environment, 117 2012 , 102–113. https://doi.org/10.1016/j.rse.2011.06.024
  • Ji, M., & Jensen, J. R. (1999). Effectiveness of subpixel analysis in detecting and quantifying urban imperviousness from Landsat Thematic Mapper imagery. Geocarto International, 14(4), 33–41. https://doi.org/10.1080/10106049908542126
  • Kavzoglu, T., & Mather, P. M. (2003). The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 24(23), 4907–4938. https://doi.org/10.1080/0143116031000114851
  • Kotarba, A. Z., & Aleksandrowicz, S. (2016). Impervious surface detection with nighttime photography from the International Space Station. Remote Sensing of Environment, 176, 2016, 295–307. https://doi.org/10.1016/j.rse.2016.02.009
  • Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., & Goetz, A. F. H. (1993). The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2–3), 145–163. https://doi.org/10.1016/0034-4257(93)90013-N
  • Li, C., Du, J., Su, Y., Li, Q., & Chen, L. (2010). Extraction of impervious surface based on multi-source satellite data of Qinhuai River basin from 1979–2009. (Ed.),^(Eds.). 2010 18th International Conference on Geoinformatics Beijing, China: IEEE.
  • Li, W., Ouyang, Z., Zhou, W., & Chen, Q. (2011). Effects of spatial resolution of remotely sensed data on estimating urban impervious surfaces. Journal of Environmental Sciences, 23(8), 1375–1383. https://doi.org/10.1016/S1001-0742(10)60541-4
  • Li, W., & Wu, C. (2016). A geostatistical temporal mixture analysis approach to address endmember variability for estimating regional impervious surface distributions. GIScience & Remote Sensing, 53(1), 102–121. https://doi.org/10.1080/15481603.2015.1118975
  • Lu, D., Hetrick, S., & Moran, E. (2011). Impervious surface mapping with Quickbird imagery. International Journal of Remote Sensing, 32(9), 2519–2533. https://doi.org/10.1080/01431161003698393
  • Lu, D., Moran, E., & Hetrick, S. (2011). Detection of impervious surface change with multitemporal Landsat images in an urban–rural frontier. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 298–306. https://doi.org/10.1016/j.isprsjprs.2010.10.010
  • Lu, D., & Weng, Q. (2006). Use of impervious surface in urban land-use classification. Remote Sensing of Environment, 102(1–2), 146–160. https://doi.org/10.1016/j.rse.2006.02.010
  • Lu, D., & Weng, Q. (2009). Extraction of urban impervious surfaces from an IKONOS image. International Journal of Remote Sensing, 30(5), 1297–1311. https://doi.org/10.1080/01431160802508985
  • Ma, T., Zhou, C., Pei, T., Haynie, S., & Fan, J. (2012). Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sensing of Environment, 124, 2012, 99–107. https://doi.org/10.1016/j.rse.2012.04.018
  • Ng, E., Yuan, C., Chen, L., Ren, C., & Fung, J. C. H. (2011). Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landscape and Urban Planning, 101(1), 59–74. https://doi.org/10.1016/j.landurbplan.2011.01.004
  • Phinn, S., Stanford, M., Scarth, P., Murray, A., & Shyy, P. (2002). Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques. International Journal of Remote Sensing, 23(20), 4131–4153. https://doi.org/10.1080/01431160110114998
  • Ren, C., Lau, K. L., Yiu, K. P., & Ng, E. (2013). The application of urban climatic mapping to the urban planning of high-density cities: The case of Kaohsiung, Taiwan. Cities, 31, 1–16. https://doi.org/10.1016/j.cities.2012.12.005
  • Ridd, M. K. (1995). Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. International Journal of Remote Sensing, 16 1995 , 2165–2185. https://doi.org/10.1080/01431169508954549
  • Roberts, D. A., Batista, G., Pereira, J., Waller, E., & Nelson, B. (1999). Change identification using multitemporal spectral mixture analysis: Applications in eastern Amazonia. In R.S. Lunetta & C. Elvidge (Eds.), Remote sensing change detection: Environmental monitoring methods and applications (pp. 137–161). Ann Arbor Press.
  • Scott, D., Petropoulos, G. P., Moxley, J., & Malcolm, H. (2014). Quantifying the physical composition of urban Morphology throughout Wales based on the time series (1989–2011) analysis of Landsat TM/ETM+ images and supporting GIS data. Remote Sensing, 6(12), 11731–11752. https://doi.org/10.3390/rs61211731
  • Shao, Y., Li, G. L., Guenther, E., & Campbell, J. B. (2015). Evaluation of topographic correction on subpixel impervious cover mapping with CBERS-2B data. IEEE Geoscience and Remote Sensing Letters, 12(8), 1675–1679. https://doi.org/10.1109/LGRS.2015.2419135
  • Shao, Z., & Liu, C. (2014). The integrated use of DMSP-OLS nighttime light and MODIS data for monitoring large-scale impervious surface dynamics: A case study in the Yangtze River Delta. Remote Sensing, 6(10), 9359–9378. https://doi.org/10.3390/rs6109359
  • Small, C., & Lu, J. W. (2006). Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis. Remote Sensing of Environment, 100(4), 441–456. https://doi.org/10.1016/j.rse.2005.10.023
  • Sutton, P. C., Anderson, S. J., Elvidge, C. D., Tuttle, B. T., & Ghosh, T. (2009). Paving the planet: Impervious surface as proxy measure of the human ecological footprint. Progress in Physical Geography, 33(4), 510–527 https://doi.org/10.1177/0309133309346649.
  • Weng, Q., Hu, X., & Liu, H. (2009). Estimating impervious surfaces using linear spectral mixture analysis with multitemporal ASTER images. International Journal of Remote Sensing, 30(18), 4807–4830. https://doi.org/10.1080/01431160802665926
  • Weng, Q. (2001). Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environmental Management, 28(6), 737–748. https://doi.org/10.1007/s002670010258
  • Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment, 117(2012), 34–49. https://doi.org/10.1016/j.rse.2011.02.030
  • Wickham, J., Herold, N., Stehman, S. V., Homer, C., Xian, G., & Claggett, P. (2018). Accuracy assessment of NLCD 2011 impervious cover data for the Chesapeake Bay region, USA. ISPRS Journal of Photogrammetry and Remote Sensing, 146(2018), 151–160. https://doi.org/10.1016/j.isprsjprs.2018.09.010
  • Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82. https://doi.org/10.3354/cr030079
  • Wu, C., & Murray, A. T. (2003). Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of Environment, 84(4), 493–505. https://doi.org/10.1016/S0034-4257(02)00136-0
  • Wu, C. (2004). Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sensing of Environment, 93(4), 480–492. https://doi.org/10.1016/j.rse.2004.08.003
  • Xia, J.-S., Du, P.-J., & Cao, W. (2011). Urban impervious surface extraction from remote sensing image based on nonlinear spectral mixture model. Acta Photonica Sinica, 40(1), 13–18. https://doi.org/10.3788/gzxb20114001.0013
  • Xian, G., Crane, M., & McMahon, C. (2008). Quantifying multi-temporal urban development characteristics in Las Vegas from Landsat and ASTER data. Photogrammetric Engineering and Remote Sensing, 74(4), 473–481. https://doi.org/10.14358/PERS.74.4.473
  • Xian, G., Crane, M., & Steinwand, D. (2005). Dynamic modeling of Tampa Bay urban development using parallel computing. Computers & Geosciences, 31(7), 920–928. https://doi.org/10.1016/j.cageo.2005.03.006
  • Xian, G., & Crane, M. (2005). Assessments of urban growth in the Tampa Bay watershed using remote sensing data. Remote Sensing of Environment, 97(2), 203–215. https://doi.org/10.1016/j.rse.2005.04.017
  • Xian, G. (2007). Mapping impervious surfaces using classification and regression tree algorithm. In Q. Weng (Ed.), Remote sensing of impervious surfaces (pp. 39–58). CRC Press.
  • Xu, J., Zhao, Y., Zhong, K., Zhang, F., Liu, X., & Sun, C. (2018). Measuring spatio-temporal dynamics of impervious surface in Guangzhou, China, from 1988 to 2015, using time-series Landsat imagery. Science of the Total Environment, 627(2018), 264–281. https://doi.org/10.1016/j.scitotenv.2018.01.155
  • Yang, F., Qian, F., & Lau, S. S. Y. (2013). Urban form and density as indicators for summertime outdoor ventilation potential: A case study on high-rise housing in Shanghai. Building and Environment, 70(2013), 122–137. https://doi.org/10.1016/j.buildenv.2013.08.019
  • Yang, L., Huang, C., Homer, C. G., Wylie, B. K., & Coan, M. J. (2003). An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery. Canadian Journal of Remote Sensing, 29(2), 230–240. https://doi.org/10.5589/m02-098
  • Yang, L., Jiang, L., Lin, H., & Liao, M. (2009). Quantifying sub-pixel urban impervious surface through fusion of optical and InSAR imagery. GIScience & Remote Sensing, 46(2), 161–171. https://doi.org/10.2747/1548-1603.46.2.161
  • Yang, L., Xian, G., Klaver, J. M., & Deal, B. (2003). Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data. Photogrammetric Engineering and Remote Sensing, 69(9), 1003–1010. https://doi.org/10.14358/PERS.69.9.1003
  • Yu, Y., Guan, J., Ma, Y., Yu, S., Guo, H., & Bao, L. (2010). Aquatic environmental quality variation in Lake Dianchi Watershed. Procedia Environmental Sciences, 2(2010), 76–81. https://doi.org/10.1016/j.proenv.2010.10.011
  • Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat Island effects in Landsat imagery. Remote Sensing of Environment, 106(3), 375–386. https://doi.org/10.1016/j.rse.2006.09.003
  • Yuan, F., Wu, C., & Bauer, M. E. (2008). Comparison of spectral analysis techniques for impervious surface estimation using Landsat imagery. Photogrammetric Engineering and Remote Sensing, 74(8), 1045–1055. https://doi.org/10.14358/PERS.74.8.1045
  • Zhang, C., Chen, Y., & Lu, D. (2015). Detecting fractional land-cover change in arid and semiarid urban landscapes with multitemporal Landsat Thematic mapper imagery. GIScience & Remote Sensing, 52(6), 700–722. https://doi.org/10.1080/15481603.2015.1071965
  • Zhang, H., Li, H., & Chen, Z. (2011). Analysis of land use dynamic change and its impact on the water environment in Yunnan Plateau lake area: A case study of the Dianchi Lake drainage area. Procedia Environmental Sciences, 10(2011), 2709–2717. https://doi.org/10.1016/j.proenv.2011.09.421
  • Zhang, J., Heng, C. K., Malone-Lee, L. C., Hii, D. J. C., Janssen, P., Leung, K. S., & Tan, B. K. (2012). Evaluating environmental implications of density: A comparative case study on the relationship between density, urban block typology and sky exposure. Automation in Construction, 22(2012), 90–101. https://doi.org/10.1016/j.autcon.2011.06.011
  • Zhang, L., & Weng, Q. (2016). Annual dynamics of impervious surface in the Pearl River Delta, China, from 1988 to 2013, using time series Landsat imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 113(2016), 86–96. https://doi.org/10.1016/j.isprsjprs.2016.01.003
  • Zhang, Q., & Seto, K. C. (2011). Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sensing of Environment, 115(9), 2320–2329. https://doi.org/10.1016/j.rse.2011.04.032
  • Zhao, Y., Zhang, K., Fu, Y., & Zhang, H. (2012). Examining land-use/land-cover change in the Lake Dianchi watershed of the Yunnan-Guizhou plateau of southwest China with remote sensing and GIS techniques: 1974-2008. International Journal of Environmental Research and Public Health, 9(11), 3843–3865. https://doi.org/10.3390/ijerph9113843