1,130
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effects of lidar coverage and field plot data numerosity on forest growing stock volume estimation

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 199-212 | Received 13 Dec 2021, Accepted 11 Feb 2022, Published online: 01 Mar 2022

References

  • Astola, H., Häme, T., Sirro, L., Molinier, M., & Kilpi, J. (2019). Comparison of sentinel-2 and landsat 8 imagery for forest variable prediction in boreal region. Remote Sensing of Environment, 223, 257–273. https://doi.org/10.1016/j.rse.2019.01.019
  • Chirici, G., Giannetti, F., McRoberts, R. E., Travaglini, D., Pecchi, M., Maselli, F., Chiesi, M., & Corona, P. (2020). Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data. International Journal of Applied Earth Observation and Geoinformation, 84, 101959. https://doi.org/10.1016/J.JAG.2019.101959
  • Chirici, G., McRoberts, R. E., Fattorini, L., Mura, M., & Marchetti, M. (2016). Comparing echo-based and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework. Remote Sensing of Environment, 174, 1–9. https://doi.org/10.1016/j.rse.2015.11.010
  • Cochran W. G., 1977. Sampling techniques, third edition, New York: John Wiley & Sons, inc.
  • Corona, P., Fattorini, L., Franceschi, S., Scrinzi, G., & Torresan, C. (2014). Estimation of standing wood volume in forest compartments by exploiting airborne laser scanning information: Model-based, design-based, and hybrid perspectives. Canadian Journal of Forest Research, 44(11), 1303–1311. https://doi.org/10.1139/cjfr-2014-0203
  • D’Amico, G., Vangi, E., Francini, S., Giannetti, F., Nicolaci, A., Travaglini, D., Massai, L., Giambastiani, Y., Terranova, C., & Chirici, G. (2021). Are we ready for a National Forest Information System? State of the art of forest maps and airborne laser scanning data availability in Italy. iForest - Biogeosciences and Forestry, 14(2), 144–154. https://doi.org/10.3832/ifor3648-014
  • De Laurentis, D., Papitto, G., Gasparini, P., Di Cosmo, L., & Floris, A., 2021. Italian Forests, Selected results of the third National Forest Inventory INFC 2015. carabinieri command for the protection of biodiversity and parks. Available online: https://www.inventarioforestale.org/sites/default/files/datiinventario/pubb/Sintesi_INFC2015.pdf
  • FAO. (2020). Global Forest Resources Assessment 2020: Main report (pp. 184). https://doi.org/10.4060/ca9825en
  • Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., Beckmann, T., Schmidt, G. L., Dwyer, J. L., Joseph Hughes, M., & Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379–390. https://doi.org/10.1016/j.rse.2017.03.026
  • FOREST EUROPE, (2015). State of Europe's forest, FOREST EUROPE Liaison Unit Madrid: Ministerial Conference on the Protection of Forests in Europe. https://foresteurope.org/wp-content/uploads/2022/02/soef_21_12_2015.pdf
  • Francini S, McRoberts R E, Giannetti F, Marchetti M, Scarascia Mugnozza G, and Chirici G. (2021). The Three Indices Three Dimensions (3I3D) algorithm: a new method for forest disturbance mapping and area estimation based on optical remotely sensed imagery. International Journal of Remote Sensing, 42(12), 4693–4711. 10.1080/01431161.2021.1899334
  • Francini S, McRoberts R E, Giannetti F, Mencucci M, Marchetti M, Scarascia Mugnozza G, and Chirici G. (2020). Near-real time forest change detection using PlanetScope imagery. European Journal of Remote Sensing, 53(1), 233–244. 10.1080/22797254.2020.1806734
  • Giannetti, F., Chirici, G., Gobakken, T., Næsset, E., Travaglini, D., & Puliti, S. (2018). A new approach with DTM-independent metrics for forest growing stock prediction using UAV photogrammetric data. Remote Sensing of Environment, 213, 195–205. https://doi.org/10.1016/j.rse.2018.05.016. rse.2018.05.016.
  • Goodwin N R, Coops N C, and Culvenor D S. (2006). Assessment of forest structure with airborne LiDAR and the effects of platform altitude. Remote Sensing of Environment, 103(2), 140–152. 10.1016/j.rse.2006.03.003
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Gregoire, T. G. (1998). Design-based and model-based inference in survey sampling: Appreciating the difference. Canadian Journal of Forest Research, 28(10), 1429–1447. https://doi.org/10.1139/x98-166
  • Gregoire, T. G., Næsset, E., McRoberts, R. E., Ståhl, G., Andersen, H.-E., Gobakken, T., Ene, L., & Nelson, R. (2016). Statistical rigor in Lidar-assisted estimation of aboveground forest biomass. Remote Sensing of Environment, 173, 98–108. https://doi.org/10.1016/j.rse.2015.11.012
  • Hijmans, R. J., & van Etten, J., 2012. raster: Geographic analysis and modeling with raster data. R package version 2.0-12. http://CRAN.R-project.org/package=raster
  • Holm, S., Nelson, R., & Ståhl, G. (2017). Hybrid three-phase estimators for large-area forest inventory using ground plots, airborne lidar, and space lidar. Remote Sensing of Environment, 197, 85–97. https://doi.org/10.1016/j.rse.2017.04.004
  • Hyyppä, J., Hyyppä, H., Leckie, D., Gougeon, F., Yu, X., & Maltamo, M. (2008). Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. International Journal of Remote Sensing. -, 29(5), 1339–1366. https://doi.org/10.1080/01431160701736489
  • INFC. (2004).Il disegno di campionamento. Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. MiPAF - Direzione Generale per le Risorse Forestali Montane e Idriche, Corpo Forestale dello Stato. ISAFA, Trento, 36. https://www.inventarioforestale.org/sites/default/files/datiinventario/Sch_Cam.pdf
  • Jakubowski M K, Guo Q, and Kelly M. (2013). Tradeoffs between lidar pulse density and forest measurement accuracy. Remote Sensing of Environment, 130, 245–253. 10.1016/j.rse.2012.11.024
  • Kangas, A., Astrup, R., Breidenbach, J., Fridman, J., Gobakken, T., Korhonen, K. T., Maltamo, M., Nilsson, M., Nord-Larsen, T., Næsset, E., & Olsson, H. (2018). Remote sensing and forest inventories in Nordic countries – Roadmap for the future. Scandinavian Journal of Forest Research, 33(4), 397–412. https://doi.org/10.1080/02827581.2017.1416666
  • Kotivuori, E., Korhonen, L., & Packalen, P. (2016). Nationwide airborne laser scanning based models for volume, biomass and dominant height in Finland. Silva Fennica, 50(4), 1567. https://doi.org/10.14214/sf.1567
  • Lefsky, M. A, Hudak, A. T, Cohen, W. B, & Acker, S. A. (2005). Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sens. Environ, 95(4), 532–548. https://doi.org/10.1016/j.rse.2005.01.010
  • Li, S., Quackenbush, L. J., & Im, J. (2019). Airborne lidar sampling strategies to enhance forest aboveground biomass estimation from Landsat imagery. Remote Sensing, 11(6), 1906. https://doi.org/10.3390/rs11161906
  • Lisańczuk, M, Mitelsztedt, K, Parkitna, K, Krok, G, Stereńczak, K, Wysocka-Fijorek, E, & Miścicki, S. (2020). Influence of sampling intensity on performance of two-phase forest inventory using airborne laser scanning. Forest Ecosystems, 7(1), 65. https://doi.org/10.1186/s40663-020-00277-6
  • Lu, D., Chen, Q., Wang, G., Liu, L., & Li, G. (2016). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9(1) , 1–43. https://doi.org/10.1080/17538947.2014.990526
  • Lu D, Chen Q, Wang G, Moran E, Batistella M, Zhang M, Vaglio Laurin G, and Saah D. (2012). Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. International Journal of Forestry Research, 2012, 1–16. 10.1155/2012/436537
  • Masek, J. G., Vermote, E. F., Saleous, N., Wolfe, R., Hall, F. G., Huemmrich, F., Gao, F., Kutler, J., & Lim, T. K. (2013). LEDAPS calibration, reflectance, atmospheric correction preprocessing code, version 2. model product. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1146
  • McRoberts, R. E., Chen, Q., Domke, G. M., Ståhl, G., Saarela, S., & Westfall, J. A. (2016b). Hybrid estimators for mean aboveground carbon per unit area. Forest Ecology and Management, 378, 44–56. https://doi.org/10.1016/j.foreco.2016.07.007
  • McRoberts, R. E., Chen, Q., Walters, B. F., & Kaisershot, D. J. (2018). The effects of global positioning system receiver accuracy on airborne laser scanning-assisted estimates of aboveground biomass. Remote Sensing of Environment, 207, 42–49. https://doi.org/10.1016/j.rse.2017.09.036
  • McRoberts, R. E, Domke, G. M, Chen, Q, Næsset, E, & Gobakken, T, 2016a. Using genetic algorithms to optimize k-Nearest Neighbors configurations for use with airborne laser scanning data. Remote Sensing of Environment. 184, 387–395. 2016.7. 2016. https://doi.org/10.1016/j.rse.2016.07.007
  • McRoberts, R. E., Liknes, G. C., & Domke, G. M. (2014). Using a remote sensing-based, percent tree cover map to enhance forest inventory estimation. Forest Ecology and Management, 331, 12–18. https://doi.org/10.1016/j.foreco.2014.07.025
  • McRoberts, R. E., Magnussen, S., Tomppo, E. O., & Chirici, G. (2011). Parametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image data. Remote Sensing of Environment, 115(12), 3165–3174. https://doi.org/10.1016/j.rse.2011.07.002
  • McRoberts, R. E., Naesset, E., & Gobakken, T. (2013). Accuracy and precision for remote sensing applications of nonlinear model-based inference. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(1), 27–34. https://doi.org/10.1109/JSTARS.2012.2227299
  • McRoberts R E, Wendt D G, Nelson M D, and Hansen M H. (2002). Using a land cover classification based on satellite imagery to improve the precision of forest inventory area estimates. Remote Sensing of Environment, 81(1), 36–44. 10.1016/S0034-4257(01)00330-3
  • MITE - Italian Ministry of Ecological Transition, 2021. Ministerial decree of 09- 29-2021 online: https://www.mite.gov.it/sites/default/files/archivio/allegati/PNRR/DEC%20398_29_9_2021%20(1).pdf
  • Montaghi, A., Corona, P., Dalponte, M., Gianelle, D., Chirici, G., & Olsson, H. (2013). Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study. International Journal of Applied Earth Observation and Geoinformation, 23, 288–300. https://doi.org/10.1016/j.jag.2012.10.002
  • Moser, P., Vibrans, A. C., McRoberts, R. E., Næsset, E., Gobakken, T., Chirici, G., Mura, M., & Marchetti, M. (2017). Methods for variable selection in LiDAR-assisted forest inventories. Forestry, 90(1), 112–124. https://doi.org/10.1093/forestry/cpw041
  • Mura, M., Bottalico, F., Giannetti, F., Bertani, R., Giannini, R., Mancini, M., Orlandini, S., Travaglini, D., & Chirici, G. (2018). Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems. International Journal of Applied Earth Observation and Geoinformation, 66, 126–134. https://doi.org/10.1016/j.jag.2017.11.013
  • Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80(1), 88–99. https://doi.org/10.1016/S0034-4257(01)00290-5
  • Næsset, E., Gobakken, T., Holmgren, J., Hyyppä, H., Hyyppä, J., Maltamo, M., M, N., Olsson, H., Persson, Å., & Söderman, U. (2004). Laser scanning of forest resources: The nordic experience. Scandinavian Journal of Forest Research, 19(6), 482–499. https://doi.org/10.1080/02827580410019553
  • Nichol, J. E., & Sarker, L. R. (2011). Improved biomass estimation using the texture para- meters of two high-resolution. Optical Sensors, 49(3), 930–948. https://doi.org/10.1109/TGRS.2010.2068574
  • Nilsson, M., Nordkvist, K., Jonzén, J., Lindgren, N., Axensten, P., Wallerman, J., Egberth, M., Larsson, S., Nilsson, L., Eriksson, J., & Olsson, H. (2017). A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory. Remote Sensing of Environment, 194, 447–454. https://doi.org/10.1016/j.rse.2016.10.022
  • Pagliarella, M. C., Sallustio, L., Capobianco, G., Conte, E., Corona, P., Fattorini, L., & Marchetti, M. (2016). From one-to two-phase sampling to reduce costs of remote sensing-based estimation of land-cover and land-use proportions and their changes. Remote Sensing of Environment, 184, 410–417. https://doi.org/10.1016/j.rse.2016.07.027
  • Puliti, S., Saarela, S., Gobakken, T., Ståhl, G., & Næsset, E. (2018). Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference. Remote Sensing of Environment, 204, 485–497. https://doi.org/10.1016/j.rse.2017.10.007
  • Saarela, S., Holm, S., Grafström, A., Schnell, S., Næsset, E., Gregoire, T. G., Nelson, R. F., & Ståhl, G. (2016). Hierarchical model-based inference for forest inventory utilizing three sources of information. Annals of Forest Science, 73(4), 895–910. https://doi.org/10.1007/s13595-016-0590-1
  • Saarela, S., Holm, S., Healey, S. P., Andersen, H. E., Petersson, H., Prentius, W., Patterson, P. L., Næsset, E., Gregoire, T. G., & Ståhl, G. (2018). Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and landsat data. Remote Sensing, 10(11) , 1832. https://doi.org/10.3390/rs10111832
  • Saarela S, Schnell S, Grafström A, Tuominen S, Nordkvist K, Hyyppä J, Kangas A, and Ståhl G. (2015). Effects of sample size and model form on the accuracy of model-based estimators of growing stock volume. Can. J. For. Res., 45(11), 1524–1534. 10.1139/cjfr-2015-0077
  • Särndal, C. E., Swensson, B., & Wretman, J. (1992). Model Assisted Survey Sampling. Springer.
  • Tabacchi, G., De Natale, F., Di Cosmo, L., Floris, A., Gagliano, C., Gasparini, P., Genchi, L., Scrinzi, G., & Tosi, V. (2007). Le stime di superficie 2005 - Prima parte. In Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio, ISAFA. Trento. 413.
  • Tabacchi, G., Di Cosmo, L., Gasparini, P., & Morelli, S. (2011). Stima del volume e della fitomassa delle principali specie forestali italiene, Equazioni di previsione, tavole del volume e tavole della fitomassa arborea epigea(pp.415). 978-88-97081-11-1. https://www.inventarioforestale.org/sites/default/files/datiinventario/pubb/tavole_cubatura.pdf
  • Tompalski, P., White, J. C., Coops, N. C., & Wulder, M. A. (2019). Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data. Remote Sensing of Environment, 227, 110–124. https://doi.org/10.1016/j.rse.2019.04.006
  • Waser, L. T., Ginzler, C., & Rehush, N. (2017). Wall-towall tree type mapping from countrywide airborne remote sensing surveys. Remote Sensing, 9(8), 766. https://doi.org/10.3390/rs9080766
  • White, J. C., Coops, N. C., Wulder, M. A., Vastaranta, M., Hilker, T., & Tompalski, P. (2016). Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Canadian Journal of Remote Sensing, 42(5), 619–641. https://doi.org/10.1080/07038992.2016.1207484
  • White, J. C., Wulder, M. A., Hobart, G. W., Luther, J. E., Hermosilla, T., Griffiths, P., Coops, N. C., Hall, R. J., Hostert, P, Dyk, A, & Guindon, L. (2014). Pixel-based image compositing for large-area dense time series applications and science. Canadian Journal of Remote Sensing, 40(3), 192–21. https://doi.org/10.1080/07038992.2014.945827
  • Wulder M A, Bater C W, Coops N C, Hilker T, and White J C. (2008). The role of LiDAR in sustainable forest management. The Forestry Chronicle, 84(6), 807–826. 10.5558/tfc84807-6
  • Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W. B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J. D., Hostert, P., Hughes, M. J, Zhu, Z. (2019). Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225, 127–147. https://doi.org/10.1016/j.rse.2019.02.015
  • Yun, T., Jiang, K., Li, G., Eichhorn, M. P., Fan, J., Liu, F., Cao, L., An, F., & Cao, L. (2021). Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach. Remote Sensing of Environment, 256, 112307. https://doi.org/10.1016/j.rse.2021.112307
  • Zhao, P., Lu, D., Wang, G., Wu, C., Huang, Y., & Yu, S. (2016). Examining spectral reflectance sa- turation in landsat imagery and corresponding solutions to improve forest above- ground biomass estimation. Remote Sensing, 8(6), 469. https://doi.org/10.3390/rs8060469