673
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Satellite thermographies as an essential tool for the identification of cold air pools: an example from SE Spain

ORCID Icon, ORCID Icon & ORCID Icon
Pages 586-603 | Received 28 Jun 2021, Accepted 03 Oct 2022, Published online: 29 Oct 2022

References

  • Allende, F. A., Fernández, F. G., Rasilla, D. A., & Alcaide, J. M. (2018). Isla de calor nocturna estival y confort térmico en Madrid: Avance para un planeamiento térmico en áreas urbanas. Ciudad y Territorio Estudios Territoriales (CyTET), 50(195), 101–120. http://hdl.handle.net/10486/689801
  • Alqasemi, A. S., Hereher, M. E., Al-Quraishi, A. M. F., Saibi, H., Aldahan, A., & Abuelgasim, A. (2020). Retrieval of monthly maximum and minimum air temperature using MODIS aqua land surface temperature data over the United Arab Emirates. Geocarto International, 1–18. https://doi.org/10.1080/10106049.2020.1837261
  • Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., & Gao, F. (2011). Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrology and Earth System Sciences, 15(1), 223–239. https://doi.org/10.5194/hess-15-223-2011
  • Arduini, G., Chemel, C., & Staquet, C. (2020). Local and non‐local controls on a persistent cold‐air pool in the Arve River Valley. Quarterly Journal of the Royal Meteorological Society, 146(731), 2497–2521. https://doi.org/10.1002/qj.3776
  • Barnes, W. L., Pagano, T. S., & Salomonson, V. V. (1998). Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1088–1100. https://doi.org/10.1109/36.700993
  • Bolstad, P. V., Swift, L., Collins, F., & Régnière, J. (1998). Measured and predicted air temperatures at basin to regional scales in the southern Appalachian Mountains. Agricultural and Forest Meteorology, 91(3–4), 161–176. https://doi.org/10.1016/S0168-1923(98)00076-8
  • Bustos, E., & Meza, F. J. (2015). A method to estimate maximum and minimum air temperature using MODIS surface temperature and vegetation data: Application to the Maipo Basin, Chile. Theoretical and Applied Climatology, 120(1–2), 211–226. https://doi.org/10.1007/s00704-014-1167-2
  • Cao, C., Xiong, J., Blonski, S., Liu, Q., Uprety, S, S., & Weng, F. (2013). Suomi NPP VIIRS sensor data record verification, validation, and long‐term performance monitoring. Journal of Geophysical Research: Atmospheres, 118(20), 11–664. https://doi.org/10.1002/2013JD020418
  • Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014
  • Collados‐Lara, A. J., Fassnacht, S. R., Pulido‐Velazquez, D., Pfohl, A. K., Morán‐Tejeda, E., Venable, N. B., … Puntenney‐Desmond, K. (2021). Intra-day variability of temperature and its near-surface gradient with elevation over mountainous terrain: Comparing MODIS land surface temperature data with coarse and fine scale near-surface measurements. International Journal of Climatology, 41(S1), E1435–E1449. https://doi.org/10.1002/joc.6778
  • Dodson, R., & Marks, D. (1997). Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate Research, 8(1), 1–20. https://doi.org/10.3354/cr008001
  • Duan, S. B., Li, Z. L., Li, H., Göttsche, F. M., Wu, H., Zhao, W., & Coll, C. (2019). Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sensing of Environment, 225, 16–29. https://doi.org/10.1016/j.rse.2019.02.020
  • Emamifar, S., Rahimikhoob, A., & Noroozi, A. A. (2013). Daily mean air temperature estimation from MODIS land surface temperature products based on M5 model tree. International Journal of Climatology, 33(15), 3174–3181. https://doi.org/10.1002/joc.3655
  • Flores, F., Arriagada, A., Donoso, N., Martínez, A., Viscarra, A., Falvey, M., & Schmitz, R. (2020). Investigation of a Nocturnal Cold-Air Pool in a Semiclosed Basin Located in the Atacama Desert. Journal of Applied Meteorology and Climatology, 59(12), 1953–1970. https://doi.org/10.1175/JAMC-D-19-0237.1
  • Foster, C. S., Crosman, E. T., & Horel, J. D. (2017). Simulations of a cold-air pool in Utah’s Salt Lake Valley: Sensitivity to land use and snow cover”. Boundary-Layer Meteorology, 164(1), 63–87. https://doi.org/10.1007/s10546-017-0240-7
  • Frei, C. (2014). Interpolation of temperature in a mountainous region using nonlinear profiles and non‐Euclidean distances. International Journal of Climatology, 34(5), 1585–1605. https://doi.org/10.1016/j.rse.2019.02.020
  • González, S., & Garreaud, R. (2019). Spatial variability of near-surface temperature over the coastal mountains in southern Chile (38 S). Meteorology and Atmospheric Physics, 131(1), 89–104. https://doi.org/10.1007/s00703-017-0555-4
  • Guillevic, P. C., Biard, J. C., Hulley, G. C., Privette, J. L., Hook, S. J., Olioso, A., & Csiszar, I. (2014). Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sensing of Environment, 154, 19–37. https://doi.org/10.1016/j.rse.2014.08.013
  • Hachem, S., Allard, M., & Duguay, C. (2009). Using the MODIS land surface temperature product for mapping permafrost: An application to Northern Quebec and Labrador, Canada. Permafrost and Periglacial Processes, 20(4), 407–416. https://doi.org/10.1002/ppp.672
  • Hillger, D. (2013). First-light imagery from Suomi NPP VIIRS. Bull. Amer. Meteorol. Society, 94(7), 1019–1029. https://doi.org/10.1175/BAMS-D-12-00097.1
  • Hulley, G. C., Malakar, N. K., Islam, T., & Freepartner, R. J. (2017). NASA’s MODIS and VIIRS land surface temperature and emissivity products: A long-term and consistent earth system data record. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(2), 522–535. https://doi.org/10.1109/JSTARS.2017.2779330
  • Hutchinson, K. D., & Cracknell, A. P. (2006). Visible infrared imager radiometer suite—A new operational cloud imager. Taylor & Francis.
  • Jaber, S. M., & Abu-Allaban, M. M. (2020). MODIS-based land surface temperature for climate variability and change research: The tale of a typical semi-arid to arid environment. European Journal of Remote Sensing, 53(1), 81–90. https://doi.org/10.1080/22797254.2020.1735264
  • Jarvis, `. C. H., & Stuart, N. (2001). A comparison among strategies for interpolating maximum and minimum daily air temperatures. Part II: The interaction between number of guiding variables and the type of interpolation method. Journal of Applied Meteorology, 40(6), 1075–1084. https://doi.org/10.1175/1520-0450(2001)0401075:ACASFI2.0.CO;2
  • Jiménez, M. A., Ruiz, A., & Cuxart, J. (2015). Estimation of cold pool areas and chilling hours through satellite-derived surface temperatures. Agricultural and Forest Meteorology, 207, 58–68. https://doi.org/10.1016/j.agrformet.2015.03.017
  • Jones, P., Jedlovec, G., Suggs, R., & Haines, S. (2004). Using MODIS LST to estimate minimum air temperatures at night. In 13th Conference on Satellite Meteorology and Oceanography (pp. 13–18). AMS Norfolk, VA.
  • Justice, C. O., Román, M. O., Csiszar, I., Vermote, E. F., Wolfe, R. E., Hook, S. J., Tschudi, M., Wang, Z., Schaaf, C. B., Miura, T., Tschudi, M., Riggs, G., Hall, D. K., Lyapustin, A. I., Devadiga, S., Davidson, C., & Masuoka, E. J. (2013). Land and cryosphere products from Suomi NPP VIIRS: Overview and status. Journal of Geophysical Research: Atmospheres, 118(17), 9753–9765. https://doi.org/10.1002/jgrd.50771
  • Katurji, M., & Zhong, S. (2012). The influence of topography and ambient stability on the characteristics of cold-air pools: A numerical investigation. Journal of Applied Meteorology and Climatology, 51(10), 1740–1749. https://doi.org/10.1175/JAMC-D-11-0169.1
  • Langer, M., Westermann, S., Heikenfeld, M., Dorn, W., & Boike, J. (2013). Satellite-based modeling of permafrost temperatures in a tundra lowland landscape. Remote Sensing of Environment, 135, 12–24. https://doi.org/10.1016/j.rse.2013.03.011
  • Lareau, N. P. (2014). The Dynamics of persistent cold-air pool breakup (Doctoral dissertation, Department of Atmospheric Sciences, University of Utah).
  • Lee, Z. P. (2006). Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications. International Ocean Colour Coordinating Group (IOCCG).
  • Lin, X., Zhang, W., Huang, Y., Sun, W., Han, P., Yu, L., & Sun, F. (2016). Empirical estimation of near-surface air temperature in China from MODIS LST data by considering physiographic features. Remote Sensing, 8(8), 629. https://doi.org/10.3390/rs8080629
  • Li, H., Sun, D., Yu, Y., Wang, H., Liu, Y., Liu, Q., & Cao, B. (2014). Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China. Remote Sensing of Environment, 142, 111–121. https://doi.org/10.1016/j.rse.2013.11.014
  • Liu, Y., Yu, Y., Yu, P., Göttsche, F., & Trigo, I. (2015). Quality assessment of S-NPP VIIRS land surface temperature product. Remote Sensing, 7(9), 12215–12241. https://doi.org/10.3390/rs70912215
  • Martínez Villagrasa, D., Conangla Triviño, L., Simó, G., Jiménez Cortés, M. A., Tabarelli, D., Miró Cubells, J. R., & Cuxart Rodamillans, J. (2016). Cold-air pooling in the Cerdanya valley (Pyrenees). In EMS Annual Meeting abstracts.
  • Metz, M., Rocchini, & Neteler, M, D. (2014). Surface temperatures at the continental scale: Tracking changes with remote sensing at unprecedented detail. Remote Sensing, 6(5), 3822–3840. https://doi.org/10.3390/rs6053822
  • Minnett, P. J., Evans, R. H., Podestá, G. P., & Kilpatrick, K. A. (2014). Sea-surface temperature from suomi-NPP VIIRS: Algorithm development and uncertainty estimation. In Ocean Sensing and Monitoring VI. (Vol. 9111, pp. 91110C). International Society for Optics and Photonics. SPIE 9111, Ocean Sensing and Monitoring VI, 91110C. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9111/91110C/Sea-surface-temperature-from-Suomi-NPP-VIIRS--algorithm-development/10.1117/12.2053184.short?SSO=1
  • Misslin, R., Vaguet, Y., Vaguet, A., & Daudé, É. (2018). Estimating air temperature using MODIS surface temperature images for assessing Aedes aegypti thermal niche in Bangkok, Thailand. Environmental Monitoring and Assessment, 190(9), 537. https://doi.org/10.1007/s10661-018-6875-0
  • Mostovoy, G. V., King, R. L., Reddy, K. R., Kakani, V. G., & Filippova, M. G. (2006). Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi. GIScience & Remote Sensing, 43(1), 78–110. https://doi.org/10.2747/1548-1603.43.1.78
  • Mutiibwa, D., Strachan, S., & Albright, T. (2015). Land surface temperature and surface air temperature in complex terrain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10), 4762–4774. https://doi.org/10.1109/JSTARS.2015.2468594
  • Nalder, I. A., & Wein, R. W. (1998). Spatial interpolation of climatic normals: Test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology, 92(4), 211–225. https://doi.org/10.1016/S0168-1923(98)00102-6
  • Neteler, M. (2010). Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sensing, 2(1), 333–351. https://doi.org/10.3390/rs1020333
  • Niclòs, R., Pérez-Planells, L., Coll, C., Valiente, J. A., & Valor, E. (2018). Evaluation of the S-NPP VIIRS land surface temperature product using ground data acquired by an autonomous system at a rice paddy. ISPRS Journal of Photogrammetry and Remote Sensing, 135, 1–12. https://doi.org/10.1016/j.isprsjprs.2017.10.017
  • Noi, P., Kappas, M., & Degener, J. (2016). Estimating daily maximum and minimum land air surface temperature using MODIS land surface temperature data and ground truth data in Northern Vietnam. Remote Sensing, 8(12), 1002. https://doi.org/10.3390/rs8121002
  • Opazo, S., & Chuvieco, E. (2007). Utilización de productos MODIS para la cartografía de áreas quemadas. Revista de Teledetección, 27, 27–43.
  • Phan, T. N., Kappas, M., Nguyen, K. T., Tran, T. P., Tran, Q. V., & Emam, A. R. (2019). Evaluation of MODIS land surface temperature products for daily air surface temperature estimation in northwest Vietnam. International Journal of Remote Sensing, 40(14), 5544–5562. https://doi.org/10.1080/01431161.2019.1580789
  • Potter, C., & Alexander, O. (2019). Changes in vegetation cover and snowmelt timing in the Noatak national preserve of Northwestern Alaska estimated from MODIS and Landsat satellite image analysis. European Journal of Remote Sensing, 52(1), 542–556. https://doi.org/10.1080/22797254.2019.1689852
  • Rajasekar, U., & Weng, Q. (2009). Urban heat island monitoring and analysis using a non-parametric model: A case study of Indianapolis. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 86–96. https://doi.org/10.1016/j.isprsjprs.2008.05.002
  • Schroeder, W., & Giglio, L. (2017). VIIRS/NPP thermal anomalies/Fire 6-Min L2 Swath 750m V001. In NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/VIIRS/VNP14.001
  • Shapiro, S. L., Schwartz, G. E., & Bonner, G. (1998). Effects of mindfulness-based stress reduction on medical and premedical students. Journal of Behavioral Medicine, 21(6), 581–599. https://doi.org/10.1023/A:1018700829825
  • Shen, S., & Leptoukh, G. G. (2011). Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environmental Research Letters, 6(4), 045206. https://doi.org/10.1088/1748-9326/6/4/045206
  • Sismanidis, P., Keramitsoglou, I., Bechtel, B., & Kiranoudis, C. (2016). Improving the downscaling of diurnal land surface temperatures using the annual cycle parameters as disaggregation kernels. Remote Sensing, 9(1), 23. https://doi.org/10.3390/rs9010023
  • Sobrino, J. A., Julien, Y., & García-Monteiro, S. (2020). Surface temperature of the planet earth from satellite data. Remote Sensing, 12(2), 218. https://doi.org/10.3390/rs12020218
  • Sun, D., & Pinker, R. T. (2003). Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES‐8). Journal of Geophysical Research: Atmospheres, 108(D11). https://doi.org/10.1029/2002JD002422
  • Thornton, P. E., Running, S. W., & White, M. A. (1997). Generating surfaces of daily meteorological variables over large regions of complex terrain. Journal of Hydrology, 190(3–4), 214–251. https://doi.org/10.1016/S0022-1694(96)03128-9
  • Vancutsem, C., Ceccato, P., Dinku, T., & Connor, S. J. (2010). Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114(2), 449–465. https://doi.org/10.1016/j.rse.2009.10.002
  • Voinov, V. G., & Nikulin, M. S. (1993). Techniques for constructing Unbiased Estimators. In Unbiased Estimators and Their Applications (pp. 145–246). Springer.
  • Wang, M., He, G., Zhang, Z., Wang, G., Wang, Z., Yin, R., Cui, S., Wu, Z., & Cao, X. (2019). A radiance-based split-window algorithm for land surface temperature retrieval: Theory and application to MODIS data. International Journal of Applied Earth Observation and Geoinformation, 76, 204–217. https://doi.org/10.1016/j.jag.2018.11.015
  • Wan, Z., Hook, S., & Hulley, G. (2015). MYD11A1 MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MYD11A1.006
  • Wan, Z., & Li, Z. L. (2010). MODIS land surface temperature and emissivity. Land Remote Sensing and Global Environmental Change (pp. 563–577). Springer. https://doi.org/10.1007/978-1-4419-6749-7_25
  • Westermann, S., Langer, M., & Boike, J. (2012). Systematic bias of average winter-time land surface temperatures inferred from MODIS at a site on Svalbard, Norway. Remote Sensing of Environment, 118, 162–167. https://doi.org/10.1016/j.rse.2011.10.025
  • Wolfe, R. E. (2006). MODIS geolocation. In Earth science satellite remote sensing (pp. 50–73). Springer.
  • Xu, X., Du, H., Zhou, G., & Li, P. (2016). Method for improvement of MODIS leaf area index products based on pixel-to-pixel correlations. European Journal of Remote Sensing, 49(1), 57–72. https://doi.org/10.5721/EuJRS20164904
  • Xue, J., Anderson, M. C., Gao, F., Hain, C., Sun, L., Yang, Y., Schull, M., Kustas, W. P., Torres-Rua, A., & Schull, M. (2020). Sharpening ECOSTRESS and VIIRS land surface temperature using harmonized Landsat-Sentinel surface reflectances. Remote Sensing of Environment, 251, 112055. https://doi.org/10.1016/j.rse.2020.112055
  • Xu, X., Zhou, G., Du, H., Mao, F., Xu, L., Li, X., & Liu, L. (2020). Combined MODIS land surface temperature and greenness data for modeling vegetation phenology, physiology, and gross primary production in terrestrial ecosystems. Science of the Total Environment, 726, 137948. https://doi.org/10.1016/j.scitotenv.2020.137948
  • Yang, Y., Cai, W., & Yang, J. (2017). Evaluation of MODIS land surface temperature data to estimate near-surface air temperature in Northeast China. Remote Sensing, 9(5), 410. https://doi.org/10.3390/rs9050410
  • Yu, Y., Tarpley, D., Privette, J. L., Goldberg, M. D., Raja, M. R. V., Vinnikov, K. Y., & Xu, H. (2008). Developing algorithm for operational GOES-R land surface temperature product. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 936–951. https://doi.org/10.1109/TGRS.2008.2006180
  • Zängl, G. (2005). Formation of extreme cold-air pools in elevated sinkholes: An idealized numerical process study. Monthly Weather Review, 133(4), 925–941. https://doi.org/10.1175/MWR2895.1
  • Zhong, S., Whiteman, C. D., Bian, X., Shaw, W. J., & Hubbe, J. M. (2001). Meteorological processes affecting the evolution of a wintertime cold air pool in the Columbia basin. Monthly Weather Review, 129(10), 2600–2613.
  • Zhou, W., Peng, B., & Shi, J. (2017). Reconstructing spatial–temporal continuous MODIS land surface temperature using the DINEOF method. Journal of Applied Remote Sensing, 11(4), 046016. https://doi.org/10.1117/1.JRS.11.046016
  • Zhu, W., Lű, A., & Jia, S. (2013). Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sensing of Environment, 130, 62–73. https://doi.org/10.1016/j.rse.2012.10.034