1,149
Views
0
CrossRef citations to date
0
Altmetric
Research Article

How a basement fault has controlled Pb- Zn ore deposition within the Zagros Fold-Thrust Belt? a focus on remote sensing approaches

, &
Article: 2166875 | Received 25 Apr 2022, Accepted 05 Jan 2023, Published online: 24 Jan 2023

References

  • Abdelkarim, M., & Al-Arifi, N. (2021). Synergy of remote sensing data for exploring hydrothermal mineral resources using gis-based fuzzy logic approach. Synergy of Remote Sensing and Deep Learning for Mineral Resources and Environment Special Issue, 13(22), 4492. https://doi.org/10.3390/rs13224492
  • Ahmadirouhani, R., Karimpour, M. H., Rahimi, B., Malekzadeh-Shafaroudi, A., Pour, A. B., & Pradhan, B. (2018). Integration of SPOT-5 and ASTER satellite data for structural tracing and hydrothermal alteration mineral mapping: Implications for Cu–Au prospecting. International Journal of Image and Data Fusion, 9(3), 237–23. https://doi.org/10.1080/19479832.2018.1469548
  • Ahmadi, H., & Uygucgil, H. (2021). Targeting iron prospective within the Kabul Block (SE Afghanistan) via hydrothermal alteration mapping using remote sensing techniques. Arabian Journal of Geosciences, 14(3), 183. https://doi.org/10.1007/s12517-020-06430-3
  • Alavi, M. (2004). Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304(1), 1–20. https://doi.org/10.2475/ajs.304.1.1
  • Austin J and Blenkinsop T. (2009). Local to regional scale structural controls on mineralisation and the importance of a major lineament in the eastern Mount Isa Inlier, Australia: Review and analysis with autocorrelation and weights of evidence. Ore Geology Reviews, 35(3–4), 298–316. https://doi.org/10.1016/j.oregeorev.2009.03.004
  • Azizi, H., Tarverdi, M. A., & Akbarpour, A. (2010). Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Advances in Space Research, 46(1), 99–109. https://doi.org/10.1016/j.asr.2010.03.014
  • Beales, F. W., & Jackson, S. A. (1966). Precipitation of lead-zinc ores in carbonate reservoirs as illustrated by Pine Point ore field. In Inst. Mining and Metallurgy (pp. B278–285). Transactions/Section B
  • Beiranvand Pour, A., Park, T. Y. S., Park, Y., Hong, J. K., Zoheir, B., Pradhan, B., Ayoobi, I., & Hashim, M. (2018). Application of multi-sensor satellite data for exploration of Zn–Pb sulfide mineralization in the Franklinian Basin, North Greenland. Remote Sensing, 10(8), 1186. https://doi.org/10.3390/rs10081186
  • Berberian, M. (1995). Master “blind” thrust faults hidden under the Zagros folds: Active basement tectonics and surface morphotectonics. Tectonophysics, 241(3–4), 193–224. https://doi.org/10.1016/0040-1951(94)00185-C
  • Bojinski, S., Schaepman, M., Schläpfer, D., & Itten, K. (2003). SPECCHIO: A spectrum database for remote sensing applications. Computers & Geosciences, 29(1), 27–38. https://doi.org/10.1016/S0098-3004(02)00107-3
  • Bolouki, S. M., Ramazi, H. R., Maghsoudi, A., Pour, A. B., & Sohrabi, G. (2020). A Remote Sensing-Based Application of Bayesian Networks for Epithermal Gold Potential Mapping in Ahar-Arasbaran Area, NW Iran. Remote Sensing, 12(1), 105. https://doi.org/10.3390/rs12010105
  • Casini, G., Gillespie, P. A., Vergés, J., Romaire, I., Fernández, N., Casciello, E. Saura, E., Mehl, S., Homke, S., Embry, J.C., Aghajari, L., & Hunt, D.W. (2011). Sub-seismic fractures in foreland fold and thrust belts: Insight from the Lurestan Province.Geological Society of London, 17(3),263–282.
  • Chander, G., Markham, B. L., & Barsi, J. A. (2007). Revised Landsat-5 thematic mapper radiometric calibration. IEEE Geoscience and Remote Sensing Letters, 4(3), 490–494. https://doi.org/10.1109/LGRS.2007.898285
  • Chandler, R. J., De Freitas, M. H., & Marinos, P. (2004). Geotechnical characterization of soils and rocks: A geological perspective. In Advances in geotechnical engineering: The Skempton conference: Proceedings of a three-day conference on advances in geotechnical engineering, organized by the Institution of Civil Engineers and held at the Royal Geographical Society, London, UK, on 29–31 March 2004 (pp. 67–102). Thomas Telford Publishing.
  • Chen, G., Shu, L., Shu, L., Zhang, C., & Ouyang, Y. (2016). Geological characteristics and mineralization setting of the Zhuxi tungsten (copper) polymetallic deposit in the EASTERn Jiangnan Orogen. Science China Earth Sciences, 59(4), 803–823. https://doi.org/10.1007/s11430-015-5200-9
  • Ducart, D. F., Crósta, A. P., Filho, C. R. S., & Coniglio, J. (2006). Alteration mineralogy at the Cerro La Mina epithermal prospect, Patagonia, Argentina: Field mapping, short-wave infrared spectroscopy, and ASTER images. Economic Geology, 101(5), 981–996. https://doi.org/10.2113/gsecongeo.101.5.981
  • El-Wahed, M. A., Zoheir, B., Pour, A. B., & Kamh, S. (2021). Shear-Related Gold Ores in the Wadi Hodein Shear Belt, South Eastern Desert of Egypt: Analysis of Remote Sensing, Field and Structural Data. Minerals, 11(5), 474. https://doi.org/10.3390/min11050474
  • Fatima, K., Khattak, M. O. K., Kausar, A. B., Toqeer, M., Haider, N., & Rehman, A. U. (2017). Minerals identification and mapping using ASTER satellite image. Journal of Applied Remote Sensing, 11(4), 046006. https://doi.org/10.1117/1.JRS.11.046006
  • Fazli, S., Taghipour, B., & Lentz, D. R. (2018). The Zn-Pb sulfide and Pb-Zn-Ag non-sulfide Kuh-e-Surmeh ore deposit, Zagros Belt, Iran: Geologic, mineralogical, geochemical, and S isotopic constraints. Journal of Geochemical Exploration, 194, 146–166. https://doi.org/10.1016/j.gexplo.2018.07.019
  • Fazli, S., Taghipour, B., Moore, F., & Lentz, D. R. (2019). Fluid inclusions, S isotopes, and Pb isotopes characteristics of the Kuh-e-Surmeh carbonate-hosted Zn–Pb deposit in the Zagros Fold Belt, southwest Iran: Implications for the source of metals and sulfur and MVT genetic model. Ore Geology Reviews, 109, 615–629. https://doi.org/10.1016/j.oregeorev.2019.04.006
  • Ghasemi, A., & Talbot, C. J. (2006). A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26(6), 683–693. https://doi.org/10.1016/j.jseaes.2005.01.003
  • Ghorbani, M. (2021). Structural Units of Iran. The Geology of Iran: Tectonic, Magmatism, and Metamorphism (pp. 23–80). Springer. https://link.springer.com/book/10.1007/978-3-030-71109-2
  • Gopinathan, P., Parthiban, S., Magendran, T., Fadhil Al-Quraishi, A. M., Singh, A. K., & Pradeep, K. S. (2020). Mapping of ferric (Fe+3) and ferrous (Fe+2) iron oxides distribution using band ratio techniques with ASTER data and geochemistry of Kanjamalai and Godumalai, Tamil Nadu, south India. Remote Sensing Applications: Society and Environment, 18, 100306. https://doi.org/10.1016/j.rsase.2020.100306
  • Guha, A., Kumar, K. V., Rao, E. N. D., & Parveen, R. (2014). An image processing approach for converging ASTER-derived spectral maps for mapping Kolhan limestone, Jharkhand, India. Current Science, 106(1), 40–49.
  • Guo, Y., & Zeng, F. (2012). Atmospheric correction comparison of spot-5 image based on model flash and model quac, international archives of the photogrammetry, remote sensing and spatial information sciences. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B7, 7–11. https://doi.org/10.5194/isprsarchives-XXXIX-B7-7-2012
  • Hadigheh, S. M. H., & Ranjbar, H. (2013). Lithological mapping in the eAstern part of the central Iranian volcanic belt using combined ASTER and IRS data. Journal of the Indian Society of Remote Sensing, 41(4), 921–931. https://doi.org/10.1007/s12524-013-0284-1
  • Han L, Liu Z, Ning Y and Zhao Z. (2018). Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area. Advances in Space Research, 62(9), 2480–2493. https://doi.org/10.1016/j.asr.2018.07.030
  • Hassanpour, J., Jahani, S., Ghassemi, M. R., Alavi, S. A., & Zeinali, F. (2018). Evolution of the Karebas Fault System and adjacent folds, central Zagros fold-and-thrust belt, Iran: Role of pre-existing halokinesis (salt structures and mini basins) and detachment levels. Journal of Asian Earth Sciences, 164, 125–142. https://doi.org/10.1016/j.jseaes.2018.06.024
  • Hassanpour, J., Muñoz, J. A., Yassaghi, A., Ferrer, O., Jahani, S., Santolaria, P., & Seyed Ali, S. M. (2021). Impact of salt layers interaction on the salt flow kinematics and diapirism in the EASTERn Persian Gulf, Iran: Constraints from seismic interpretation, sequential restoration, and physical modeling. Tectonophysics, 811, 228887. https://doi.org/10.1016/j.tecto.2021.228887
  • Homke, S., Vergés, J., Serra-Kiel, J., Bernaola, G., Sharp, I., Garcés, M., Montero-Verdú, I., Karpuz, R., & Goodarzi, M. H. (2009). Late Cretaceous–Paleocene formation of the proto–Zagros foreland basin, Lurestan Province, SW Iran. Geological Society of America Bulletin, 121(7–8), 963–978. https://doi.org/10.1130/B26035.1
  • Honarmand, M., Ranjbar, H., & Shahabpour, J. (2012). Application of principal component analysis and spectral angle mapper in the mapping of hydrothermal alteration in the Jebal–Barez Area, SoutheAstern Iran. Resource Geology, 62(2), 119–139. https://doi.org/10.1111/j.1751-3928.2012.00184.x
  • Hosseinpour, M., Maleki, Z., & Aleali, M. (2017). Evaluation of Hydrocarbon Potential in the Jahrom Area, Interior Fars, Zagros. Open Journal of Geology, 7, 3. https://doi.org/10.4236/ojg.2017.73029
  • Hunt, G. R., & Ashley, P. (1979). Spectra of Altered Rocks in the Visible and Near Infrared. Economic Geology, 74, 1613–1629. https://doi.org/10.2113/gsecongeo.74.7.1613
  • Ibrahim, Umikaltuma, Mutua, Felix 2014 Lineament Extraction using Landsat 8 (OLI) in Gedo, Somalia International Journal of Science and Research English, 3(9), 291–296. 2319-7064.
  • Jackson, J. A. (1980). Reactivation of basement faults and crustal shortening in orogenic belts. Nature, 283(5745), 343–346. https://doi.org/10.1038/283343a0
  • Jackson, S. A., & Beales, F. W. (1967). An aspect of sedimentary basin evolution: The concentration of Mississippi Valley-type ores during late stages of diagenesis. Bulletin of Canadian Petroleum Geology, 15(4), 383–433. https://doi.org/10.35767/gscpgbull.15.4.383.
  • Jahani, S., Hassanpour, J., Mohammadi-Firouz, S., Letouzey, J., de Lamotte, D. F., Alavi, S. A., & Soleimany, B. (2017). Salt tectonics and tear faulting in the central part of the Zagros Fold-Thrust Belt, Iran. Marine and Petroleum Geology, 86, 426–446. https://doi.org/10.1016/j.marpetgeo.2017.06.003
  • Lacombe, O., Mouthereau, F., Kargar, S., & Meyer, B. (2006). Late Cenozoic and modern stress fields in the western Fars (Iran): Implications for the tectonic and kinematic evolution of central Zagros. Tectonics, 25(1). https://doi.org/10.1029/2005TC001831
  • Leach D L, Song Y and Hou Z. (2017). The world-class Jinding Zn–Pb deposit: ore formation in an evaporite dome, Lanping Basin, Yunnan, China. Miner Deposita, 52(3), 281–296. https://doi.org/10.1007/s00126-016-0668-6
  • Liaghat, S., Moore, F., & Jami, M. (2000). The Kuh-e-Surmeh mineralization, a carbonate-hosted Zn-Pb deposit in the Simply Folded Belt of the Zagros Mountains, SW Iran. Mineralium Deposita, 35, 72–78. https://doi.org/10.1007/s001260050007
  • Liu, S., Zhang, Y., Zhao, L., Chen, X., Zhou, R., Zheng, F., Li, Z., Li, J., Yang, H., Li, H., Yang, J., Gao, H., & Gu, X. (2022). Quantitative and Automatic Atmospheric Correction (QUAAC): Application and Validation. Sensors, 22(9), 3280. https://doi.org/10.3390/s22093280
  • Maghfouri, S., Hosseinzadeh, M. R., Rajabi, A., & Choulet, F. (2018). A review of major non-sulfide zinc deposits in Iran. Geoscience Frontiers, 9(1), 249–272. https://doi.org/10.1016/j.gsf.2017.04.003
  • Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2(3), 161–186. https://doi.org/10.1130/GES00044.1
  • Mauldon M, Dunne W and Rohrbaugh M. (2001). Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces. Journal of Structural Geology, 23(2–3), 247–258. https://doi.org/10.1016/S0191-8141(00)00094-8
  • Mazhari, N., Shafaroudi, A. M., & Ghaderi, M. Detecting and mapping different types of iron mineralization in the Sangan mining region, NE Iran, using satellite images and airborne geophysical data. (2017). Geosciences Journal, 21(1), 137–148. Corpus ID: 102341773. https://doi.org/10.1007/s12303-016-0018-9
  • McCubbin, I., Green, R., Lang, H., & Roberts, D. (1998). Mineral mapping using partial unmixing at Ray. JPL Technical Report Server, California Institute of Technology. http://hdl.handle.net/2014/19333
  • Meshkani S Ahmad, Mehrabi B, Yaghubpur A and Sadeghi M. (2013). Recognition of the regional lineaments of Iran: Using geospatial data and their implications for exploration of metallic ore deposits. Ore Geology Reviews, 55, 48–63. https://doi.org/10.1016/j.oregeorev.2013.04.007
  • Moghtaderi, A., Moore, F., & Ranjbar, H. (2017). Application of ASTER and Landsat 8 imagery data and mathematical evaluation method in detecting iron minerals contamination in the Chadormalu iron mine area, central Iran. Journal of Applied Remote Sensing, 11(1), 016027. https://doi.org/10.1117/1.JRS.11.016027
  • Molchanova, T. K., & Ruban, D. A. (2019). New Evidence of the Bangestan Geoheritage Resource in Iran: Beyond Hydrocarbon Reserves. Resources, 8(1), 35. https://doi.org/10.3390/resources8010035
  • Moradpour H, Rostami Paydar G, Pour A Beiranvand, Valizadeh Kamran K, Feizizadeh B, Muslim A M and Hossain M Shawkat. (2022). Landsat-7 and ASTER remote sensing satellite imagery for identification of iron skarn mineralization in metamorphic regions. Geocarto International, 37(7), 1971–1998. https://doi.org/10.1080/10106049.2020.1810327
  • Moragas, M., Baqués, V., Travé, A., Martín‐martín, J. D., Saura, E., Messager, G., Hunt, D., & Vergés, J. (2020). Diagenetic evolution of lower Jurassic platform carbonates flanking the Tazoult salt wall (Central High Atlas, Morocco). Basin Research, 32(3), 546–566. https://doi.org/10.1111/bre.12382
  • Mouthereau, F., Lacombe, O., & Meyer, B. (2006). The Zagros folded belt (Fars, Iran): Constraints from topography and critical wedge modelling. Geophysical Journal International, 165(1), 336–356. https://doi.org/10.1111/j.1365-246X.2006.02855.x
  • Ortiz-Castillo, J. E., Mirazimi, M., Mohammadi, M., Dy, E., & Liu, W. Y. (2022). The role of microorganisms in the formation, dissolution, and transformation of secondary minerals in mine rock and drainage: A review Minerals. Minerals, 11(12), 1349, 10.3390/min11121349. https://doi.org/10.3390/min11121349
  • Oveisi B, Lavé J, van der Beek P, Carcaillet J, Benedetti L and Aubourg C. (2009). Thick- and thin-skinned deformation rates in the central Zagros simple folded zone (Iran) indicated by displacement of geomorphic surfaces. Geophysical Journal International, 176(2), 627–654. https://doi.org/10.1111/j.1365-246X.2008.04002.x
  • Pahl P. (1981). Estimating the mean length of discontinuity traces. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(3), 221–228. https://doi.org/10.1016/0148-9062(81)90976-1
  • Perona, J., Canals, À., & Cardellach, E. (2018). Zn-Pb mineralization associated with salt diapirs in the Basque-Cantabrian Basin, northern Spain: Geology, geochemistry, and genetic model. Economic Geology, 113(5), 1133–1159. https://doi.org/10.5382/econgeo.2018.4584
  • Pirajno, F., Burlow, R., & Huston, D. (2010). The Magellan Pb deposit, Western Australia; a new category within the class of supergene non-sulfide mineral systems. Ore Geology Reviews, 37(2), 101–113. https://doi.org/10.1016/j.oregeorev.2010.01.001
  • Pour A Beiranvand and Hashim M. (2012). The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9. https://doi.org/10.1016/j.oregeorev.2011.09.009
  • Pour, A. B., Park, Y., Park, T. Y. S., Hong, J. K., Hashim, M., Woo, J., & Ayoobi, I. (2018). Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica. Polar Science, 16, 23–46. https://doi.org/10.1016/j.polar.2018.02.004
  • Pour, A. B., Sekandari, M., Rahmani, O., Crispini, L., Läufer, A., Park, Y., Hong, J. K., Pradhan, B., Hashim, M., Hossain, M. S., Muslim, A. M., & Mehranzamir, K. (2021). Identification of Phyllosilicates in the Antarctic Environment Using ASTER Satellite Data: Case Study from the Mesa Range, Campbell and Priestley Glaciers, Northern Victoria Land. Remote Sensing, 13(1), 38. https://doi.org/10.3390/rs13010038
  • Priest S and Hudson J. (1981). Estimation of discontinuity spacing and trace length using scanline surveys. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(3), 183–197. https://doi.org/10.1016/0148-9062(81)90973-6
  • Rajabi, A., Rastad, E., & Canet, C. (2013). Metallogeny of Permian–Triassic carbonate-hosted Zn–Pb and F deposits of Iran: A review for future mineral exploration. Australian Journal of Earth Sciences, 60(2), 197–216. https://doi.org/10.1080/08120099.2012.754792
  • Rajendran, S., & Sobhi Nasir, S. (2013). Mapping of manganese potential areas using ASTER satellite data in parts of Sultanate of Oman. International Journal of Geosciences and Geomatics, Arab Remote Sensing and Geographic Information System Organization, x(xx), 92–101.
  • Rasouli Beirami M and Tangestani M H. (2020). A New Band Ratio Approach for Discriminating Calcite and Dolomite by ASTER Imagery in Arid and Semiarid Regions. Nat Resour Res, 29(5), 2949–2965. https://doi.org/10.1007/s11053-020-09648-w
  • Reichert, J., & Borg, G. (2008). Numerical simulation and a geochemical model of supergene carbonate-hosted non sulphide zinc deposits Ore. Ore Geology Reviews, 33(2), 134–151. https://doi.org/10.1016/j.oregeorev.2007.02.006
  • Reuning, L., Johannes, S., Ansgar, H., Urai, J. L., Littke, R., Kukla, P. A., & Rawahi, Z. (2009). Constraints on the diagenesis, stratigraphy and internal dynamics of the surface-piercing salt domes in the Ghaba Salt Basin (Oman): A comparison to the Ara Group in the South Oman Salt Basin. GeoArabia, 14(3), 83–120. https://doi.org/10.2113/geoarabia140383
  • Roozpeykar, A., & Moghaddam, I. M. (2016). Benthic foraminifera as biostratigraphical and - paleoecological indicators: An example from Oligo-Miocene deposits in the SW of Zagros basin, Iran. Geoscience Frontiers, 7(1), 125–140. https://doi.org/10.1016/j.gsf.2015.03.005
  • ROSSETTI F, ALDEGA L, TECCE F, BALSAMO F, BILLI A and BRILLI M. (2011). Fluid flow within the damage zone of the Boccheggiano extensional fault (Larderello–Travale geothermal field, central Italy): structures, alteration and implications for hydrothermal mineralization in extensional settings. Geol. Mag., 148(4), 558–579. https://doi.org/10.1017/S001675681000097X
  • Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, 84(3), 350–366. https://doi.org/10.1016/S0034-4257(02)00127-X
  • Sekandari, M., Masoumi, I., Pour, A. B., Muslim, A. M., Hossain, M. S., & Misra, A. (2020). ASTER and WorldView-3 satellite data for mapping lithology and alteration minerals associated with Pb-Zn mineralization. Geocarto international, 37(6), 1–31. https://doi.org/10.1080/10106049.2020.1790676
  • Sheikhrahimi, A., Pour, A. B., Pradhan, B., & Zoheir, B. (2019). Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER data: A case study from the Sanandaj-Sirjan Zone, Iran. Advances in Space Research, 63(10), 3315–3332. https://doi.org/10.1016/j.asr.2019.01.035
  • Skakni O, Hlila R, Pour A Beiranvand, Martín Martín M, Maate A, Maate S, Muslim A M and Hossain M Shawkat. (2022). Integrating remote sensing, GIS and in-situ data for structural mapping over a part of the NW Rif belt, Morocco. Geocarto International, 37(11), 3265–3292. https://doi.org/10.1080/10106049.2020.1852611
  • Swayze, G. A., Smith, K. S., Clark, R. N., Sutley, S. J., Pearson, R. M., Vance, J. S., Hageman, P. L., Briggs, P. H., Meier, A. L., Singleton, M. J., & Roth, S. (2000). Using imaging spectroscopy to map acidic mine waste. Environmental Science & Technology, 34(1), 47–54. https://doi.org/10.1021/es990046w
  • Taghipour, B., & Ahmadnejad, F. (2015). Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran). Geologos, 21(1), 31–57. https://doi.org/10.1515/logos-2015-0002
  • Takodjou Wambo, J. D., Pour, A. B., Ganno, S., Asimow, P. D., Zoheir, B., Reis Salles, R. D., Nzenti, J. P., Pradhan, B., & Muslim, A. M. (2020). Identifying high potential zones of gold mineralization in a sub-tropical region using Landsat-8 and ASTER remote sensing data: A case study of the Ngoura-Colomines goldfield, eAstern Cameroon. Ore Geology Reviews, 122, 103530. https://doi.org/10.1016/j.oregeorev.2020.103530
  • Takorabt M, Toubal A Cherif, Haddoum H and Zerrouk S. (2018). Determining the role of lineaments in underground hydrodynamics using Landsat 7 ETM+ data, case of the Chott El Gharbi Basin (western Algeria). Arab J Geosci, 11(4). https://doi.org/10.1007/s12517-018-3412-y
  • Talbot, C. J., & Alavi, M. 1996. The past of a future syntaxis across the Zagros, G.I. Alsop, D.J. Blundell, & I. Davison, Eds. Salt Tectonics, Geological Society, Special Publication, Vol. 100, https://doi.org/10.1144/gsl.sp.1996.100.01.08
  • Talebian, M., & Jackson, J. (2004). A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International, 156(3), 506–526. https://doi.org/10.1111/j.1365-246X.2004.02092.x
  • Teillet, P. M., Fedosejevs, G., Gauthier, R. P., O’Neill, N. T., Thome, K. J., Biggar, S. F., Ripley, H., & Meygret, A. (2001). A generalized approach to the vicarious calibration of multiple Earth observation sensors using hyperspectral data. Remote Sensing of Environment, 77(3), 304–327. https://doi.org/10.1016/S0034-4257(01)00211-5
  • Tripp G I and Vearncombe J R. (2004). Fault/fracture density and mineralization: a contouring method for targeting in gold exploration. Journal of Structural Geology, 26(6–7), 1108–1087. https://doi.org/10.1016/j.jsg.2003.11.002
  • Upadhyay, R. (2012). Mineral abundance mapping using Hyperion dataset in Udaipur, India. in 14th Annual International Conference and Exhibition on Geospatial - Information Technology and Applications, India Geospatial Forum, Gurgaon (pp. 1–8).
  • Van der Meer, F. D., Van der Werff, H. M. A., & Van Ruitenbeek, F. J. A. (2014). Potential of ESA’s Sentinel-2 for geological applications. Remote Sensing of Environment, 148, 124–133. https://doi.org/10.1016/J.RSE.2014.03.022
  • Yang, C., Chai, F., Yang, F., Santosh, M., Xu, Q., & Wang, W. (2018). Genesis of the Huangtupo Cu–Zn deposit, EASTERn Tianshan, NW China: Constraints from geology, Rb–Sr and Re-Os geochronology, fluid inclusions, and H–O–S–Pb isotopes. Ore Geology Reviews, 101, 725–739. https://doi.org/10.1016/j.oregeorev.2018.08.021
  • Zoheir B and Emam A. (2014). Field and ASTER imagery data for the setting of gold mineralization in Western Allaqi–Heiani belt, Egypt: A case study from the Haimur deposit. Journal of African Earth Sciences, 99, 150–164. https://doi.org/10.1016/j.jafrearsci.2013.06.006
  • Zoheir B, Steele-MacInnis M and Garbe-Schönberg D. (2019). Orogenic gold formation in an evolving, decompressing hydrothermal system: Genesis of the Samut gold deposit, Eastern Desert, Egypt. Ore Geology Reviews, 105 236–257. https://doi.org/10.1016/j.oregeorev.2018.12.030