603
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Usable observations over Europe: evaluation of compositing windows for Landsat and Sentinel-2 time series

, , &
Article: 2372855 | Received 18 Feb 2024, Accepted 21 Jun 2024, Published online: 08 Jul 2024

References

  • Alfieri, J. G., Anderson, M. C., Kustas, W. P., & Cammalleri, C. (2017). Effect of the revisit interval and temporal upscaling methods on the accuracy of remotely sensed evapotranspiration estimates. Hydrology and Earth System Sciences, 21(1), 83–28. https://doi.org/10.5194/hess-21-83-2017
  • Andrefouet, S., E, B. de C., Brown de Colstoun, E., & E.C., C. (Doorn, J., Hall, B., Holifield, D. K., Howard, C., Kranenburg, S., Lee, C., Masek, S., Moran, J. B., Mueller-Karger, M., Ohlen, F., Palandro, D., Price, D., Qi, J., Reed, J., Samek, B. C., Scaramuzza, J., Skole, P., Schott, D., Storey, J., Thome, J., Torres-Pulliza, K., Vogelmann, D., Williams, J., Woodcock, D. L., Wylie, B. C.). (2003). Preliminary assessment of the value of landsat 7 etm+ data following scan line corrector malfunction. USGS. https://www.usgs.gov/media/files/preliminary-assessment-value-landsat-7-etm-slc-data
  • Ashourloo, D., Nematollahi, H., Huete, A., Aghighi, H., Azadbakht, M., Shahrabi, H. S., & Goodarzdashti, S. (2022). A new phenology-based method for mapping wheat and barley using time-series of sentinel-2 images. Remote Sensing of Environment, 280, 113206. https://doi.org/10.1016/j.rse.2022.113206
  • Atkinson, P. M., Jeganathan, C., Dash, J., & Atzberger, C. (2012). Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sensing of Environment, 123, 400–417. https://doi.org/10.1016/j.rse.2012.04.001
  • Baetens, L., Desjardins, C., & Hagolle, O. (2019). Validation of Copernicus sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure. Remote Sensing, 11(4), 433. https://doi.org/10.3390/rs11040433
  • Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831. https://doi.org/10.1016/j.rse.2021.112831
  • Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., & Friedl, M. A. (2020). Continental-scale land surface phenology from harmonized landsat 8 and sentinel-2 imagery. Remote Sensing of Environment, 240, 111685. https://doi.org/10.1016/j.rse.2020.111685
  • Bullock, E. L., Woodcock, C. E., & Olofsson, P. (2020). Monitoring tropical forest degradation using spectral unmixing and landsat time series analysis. Remote Sensing of Environment, 238, 110968. https://doi.org/10.1016/j.rse.2018.11.011
  • Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., & Eklundh, L. (2004). A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sensing of Environment, 91(3–4), 332–344. https://doi.org/10.1016/j.rse.2004.03.014
  • Chen, S., Woodcock, C. E., Bullock, E. L., Arévalo, P., Torchinava, P., Peng, S., & Olofsson, P. (2021). Monitoring temperate forest degradation on Google earth engine using Landsat time series analysis. Remote Sensing of Environment, 265, 112648. https://doi.org/10.1016/j.rse.2021.112648
  • Chu, D., Shen, H., Guan, X., Chen, J. M., Li, X., Li, J., & Zhang, L. (2021). Long time-series NDVI reconstruction in cloud-prone regions via spatio-temporal tensor completion. Remote Sensing of Environment, 264, 112632. https://doi.org/10.1016/j.rse.2021.112632
  • Cihlar, J., Manak, D., & D’Iorio, M. (1994). Evaluation of compositing algorithms for AVHRR data over land. IEEE Transactions on Geoscience and Remote Sensing, 32(2), 427–437. https://doi.org/10.1109/36.295057
  • Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J.-C., Skakun, S. V., & Justice, C. (2018). The harmonized landsat and Sentinel-2 surface reflectance data set. remote sensing of environment, 219, 145–161. https://doi.org/10.1016/j.rse.2018.09.002
  • Coluzzi, R., Imbrenda, V., Lanfredi, M., & Simoniello, T. (2018). A first assessment of the Sentinel-2 level 1-C cloud mask product to support informed surface analyses. Remote Sensing of Environment, 217, 426–443. https://doi.org/10.1016/j.rse.2018.08.009
  • Coops, N. C., Shang, C., Wulder, M. A., White, J. C., & Hermosilla, T. (2020). Change in forest condition: Characterizing non-stand replacing disturbances using time series satellite imagery. Forest Ecology & Management, 474, 118370. https://doi.org/10.1016/j.foreco.2020.118370
  • Defourny, P., Bontemps, S., Bellemans, N., Cara, C., Dedieu, G., Guzzonato, E., Hagolle, O., Inglada, J., Nicola, L., Rabaute, T., Savinaud, M., Udroiu, C., Valero, S., Bégué, A., Dejoux, J.-F., El Harti, A., Ezzahar, J., Kussul, N., Labbassi, K., & Koetz, B. (2019). Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-agri automated system in various cropping systems around the world. Remote Sensing of Environment, 221, 551–568. https://doi.org/10.1016/j.rse.2018.11.007
  • De Marzo, T., Pflugmacher, D., Baumann, M., Lambin, E. F., Gasparri, I., & Kuemmerle, T. (2021). Characterizing forest disturbances across the Argentine Dry Chaco based on landsat time series. International Journal of Applied Earth Observation and Geoinformation, 98, 102310. https://doi.org/10.1016/j.jag.2021.102310
  • Dennison, P. E., Roberts, D. A., & Peterson, S. H. (2007). Spectral shape-based temporal compositing algorithms for MODIS surface reflectance data. Remote Sensing of Environment, 109(4), 510–522. https://doi.org/10.1016/j.rse.2007.02.009
  • Díaz-Pacheco, J., van Delden, H., & Hewitt, R. (2018). The importance of scale in land use models: experiments in data conversion, data resampling, resolution and neighborhood extent. In M.T. Camacho Olmedo, M. Paegelow, J.-F. Mas, & F. Escobar (Eds.), Geomatic approaches for modeling land change scenarios (pp. 163–186). Springer International Publishing. https://doi.org/10.1007/978-3-319-60801-3_9
  • Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical high-resolution mission for gmes operational services. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026
  • EEA. (2016). Biogeographical Regions. https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3
  • Estel, S., Mader, S., Levers, C., Verburg, P. H., Baumann, M., & Kuemmerle, T. (2018). Combining satellite data and agricultural statistics to map grassland management intensity in Europe. Environmental Research Letters, 13(7), 074020. https://doi.org/10.1088/1748-9326/aacc7a
  • European Commission. (2011). COM (2011) 152 final. European Comission. https://www.d-copernicus.de/fileadmin/Content/pdf/mitteilung_Nov2011_EN_0.pdf
  • European Space Agency. (2021). Sentinel-2 MSI Level-1C TOA Reflectance, Collection 0 [ dataset]. https://doi.org/10.5270/S2_-d8we2fl
  • European Space Agency (ESA) (2014) Landsat MSS/TM/ETM+ Archive Bulk-Processing: Processor improvements and data quality (pp. C). https://doi.org/10.1117/12.2062223
  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
  • Filippelli, S. K., Vogeler, J. C., Falkowski, M. J., & Meneguzzo, D. M. (2020). Monitoring conifer cover: Leaf-off lidar and image-based tracking of eastern redcedar encroachment in central Nebraska. Remote Sensing of Environment, 248, 111961. https://doi.org/10.1016/j.rse.2020.111961
  • Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., Beckmann, T., Schmidt, G. L., Dwyer, J. L., Joseph Hughes, M., & Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379–390. https://doi.org/10.1016/j.rse.2017.03.026
  • Francini, S., Hermosilla, T., Coops, N. C., Wulder, M. A., White, J. C., & Chirici, G. (2023). An assessment approach for pixel-based image composites. ISPRS Journal of Photogrammetry and Remote Sensing, 202, 1–12. https://doi.org/10.1016/j.isprsjprs.2023.06.002
  • Franklin, S., & Robitaille, S. (2020). Forest insect defoliation and mortality classification using annual landsat time series composites: A case study in northwestern Ontario, Canada. Remote Sensing Letters, 11(12), 1175–1180. https://doi.org/10.1080/2150704X.2020.1828659
  • Frantz, D. (2019). FORCE—landsat + sentinel-2 analysis ready data and beyond. Remote Sensing, 11(9), 1124. https://doi.org/10.3390/rs11091124
  • Frantz, D., Haß, E., Uhl, A., Stoffels, J., & Hill, J. (2018). Improvement of the fmask algorithm for sentinel-2 images: Separating clouds from bright surfaces based on parallax effects. Remote Sensing of Environment, 215, 471–481. https://doi.org/10.1016/j.rse.2018.04.046
  • Frantz, D., Hostert, P., Rufin, P., Ernst, S., Röder, A., & van der Linden, S. (2022). Revisiting the past: Replicability of a historic long-term vegetation dynamics assessment in the era of big data analytics. Remote Sensing, 14(3), 597. https://doi.org/10.3390/rs14030597
  • Frantz, D., Rufin, P., Janz, A., Ernst, S., Pflugmacher, D., Schug, F., & Hostert, P. (2023). Understanding the robustness of spectral-temporal metrics across the global Landsat archive from 1984 to 2019 – A quantitative evaluation. Remote Sensing of Environment, 298, 113823. https://doi.org/10.1016/j.rse.2023.113823
  • Frantz, D., Schug, F., Wiedenhofer, D., Baumgart, A., Virág, D., Cooper, S., Gómez-Medina, C., Lehmann, F., Udelhoven, T., van der Linden, S., Hostert, P., & Haberl, H. (2023). Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nature Communications, 14(1), 8014. https://doi.org/10.1038/s41467-023-43755-5
  • Friedl, M., Josh, G., & Sulla-Menashe, D.(2019). MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006 [ dataset]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD12Q2.006Friedl, M.Josh, G.Sulla-Menashe, D.
  • Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience & Remote Sensing, 44(8), 2207–2218. https://doi.org/10.1109/TGRS.2006.872081
  • Gascon, F.Biasutti, R.Ferrara, R.Fischer, P.Galli, L.Hoersch, B.Hopkins, S.Jackson, J.Lavender, S.Mica, S.Northrop, A.Paciucci, A.Paul, F. Pinori, S.Saunier, S.(Jack) Xiong, X.J. J. ButlerX. Gu
  • Ghassemi, B., Dujakovic, A., Żółtak, M., Immitzer, M., Atzberger, C., & Vuolo, F. (2022). Designing a European-Wide Crop Type Mapping Approach Based on Machine Learning Algorithms Using LUCAS Field Survey and sentinel-2 data. Remote Sensing, 14(3), 541. https://doi.org/10.3390/rs14030541
  • Giroux-Bougard, X., Fluet-Chouinard, E., Crowley, M. A., Cardille, J. A., & Humphries, M. M. (2023). Multi-sensor detection of spring breakup phenology of Canada’s lakes. Remote Sensing of Environment, 295, 113656. https://doi.org/10.1016/j.rse.2023.113656
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Griffiths, P., Nendel, C., & Hostert, P. (2019). Intra-annual reflectance composites from sentinel-2 and landsat for national-scale crop and land cover mapping. Remote Sensing of Environment, 220, 135–151. https://doi.org/10.1016/j.rse.2018.10.031
  • Griffiths, P., Nendel, C., Pickert, J., & Hostert, P. (2020). Towards national-scale characterization of grassland use intensity from integrated sentinel-2 and landsat time series. Remote Sensing of Environment, 238, 111124. https://doi.org/10.1016/j.rse.2019.03.017
  • Hamilton, B., Coops, N. C., & Lokman, K. (2021). Time series monitoring of impervious surfaces and runoff impacts in Metro Vancouver. Science of the Total Environment, 760, 143873. https://doi.org/10.1016/j.scitotenv.2020.143873
  • Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693
  • Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 109. https://doi.org/10.1038/s41597-020-0453-3
  • Hemmerling, J., Pflugmacher, D., & Hostert, P. (2021). Mapping temperate forest tree species using dense sentinel-2 time series. Remote Sensing of Environment, 267, 112743. https://doi.org/10.1016/j.rse.2021.112743
  • Hermosilla, T., Wulder, M. A., White, J. C., & Coops, N. C. (2022). Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sensing of Environment, 268, 112780. https://doi.org/10.1016/j.rse.2021.112780
  • Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., Hobart, G. W., & Campbell, L. B. (2016). Mass data processing of time series Landsat imagery: Pixels to data products for forest monitoring. International Journal of Digital Earth, 9(11), 1035–1054. https://doi.org/10.1080/17538947.2016.1187673
  • Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., Stehman, S., Auch, R., & Riitters, K. (2020). Conterminous United States land cover change patterns 2001–2016 from the 2016 national land cover database. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 184–199. https://doi.org/10.1016/j.isprsjprs.2020.02.019
  • Houborg, R., & McCabe, M. F. (2018). A cubesat enabled Spatio-temporal enhancement method (CESTEM) utilizing planet, landsat and MODIS data. Remote Sensing of Environment, 209, 211–226. https://doi.org/10.1016/j.rse.2018.02.067
  • Huamin, T., Qiuqun, D., & Shanzhu, X. (2020). Reconstruction of time series with missing value using 2D representation-based denoising autoencoder. Journal of Systems Engineering and Electronics, 31(6), 1087–1096. https://doi.org/10.23919/JSEE.2020.000081
  • Hunt, M. L., Blackburn, G. A., Carrasco, L., Redhead, J. W., & Rowland, C. S. (2019). High resolution wheat yield mapping using sentinel-2. Remote Sensing of Environment, 233, 111410. https://doi.org/10.1016/j.rse.2019.111410
  • Ives, A. R., Zhu, L., Wang, F., Zhu, J., Morrow, C. J., & Radeloff, V. C. (2021). Statistical inference for trends in spatiotemporal data. Remote Sensing of Environment, 266, 112678. https://doi.org/10.1016/j.rse.2021.112678
  • Kandasamy, S., Baret, F., Verger, A., Neveux, P., & Weiss, M. (2013). A comparison of methods for smoothing and gap filling time series of remote sensing observations – application to MODIS LAI products. Biogeosciences, 10(6), 4055–4071. https://doi.org/10.5194/bg-10-4055-2013
  • Kato, A., Thau, D., Hudak, A. T., Meigs, G. W., & Moskal, L. M. (2020). Quantifying fire trends in boreal forests with landsat time series and self-organized criticality. Remote Sensing of Environment, 237, 111525. https://doi.org/10.1016/j.rse.2019.111525
  • Kearney, S. P., Porensky, L. M., Augustine, D. J., Gaffney, R., & Derner, J. D. (2022). Monitoring standing herbaceous biomass and thresholds in semiarid rangelands from harmonized landsat 8 and sentinel-2 imagery to support within-season adaptive management. Remote Sensing of Environment, 271, 112907. https://doi.org/10.1016/j.rse.2022.112907
  • Kennedy, R. E., Yang, Z., & Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms. Remote Sensing of Environment, 114(12), 2897–2910. https://doi.org/10.1016/j.rse.2010.07.008
  • Kim, S., & Eun, J. (2021). Reflectance composites from multispectral satellite imagery for crop monitoring. In C.M. Neale & A. Maltese (Eds.), Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII (p. 53). SPIE. 10.1117/12.2600790.
  • Kong, D., Zhang, Y., Gu, X., & Wang, D. (2019). A robust method for reconstructing global MODIS EVI time series on the google earth engine. ISPRS Journal of Photogrammetry and Remote Sensing, 155, 13–24. https://doi.org/10.1016/j.isprsjprs.2019.06.014
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
  • Kovalskyy, V., & Roy, D. P. (2013). The global availability of landsat 5 TM and landsat 7 ETM+ land surface observations and implications for global 30m landsat data product generation. Remote Sensing of Environment, 130, 280–293. https://doi.org/10.1016/j.rse.2012.12.003
  • Kowalski, K., Okujeni, A., Brell, M., & Hostert, P. (2022). Quantifying drought effects in Central European grasslands through regression-based unmixing of intra-annual sentinel-2 time series. Remote Sensing of Environment, 268, 112781. https://doi.org/10.1016/j.rse.2021.112781
  • Kowalski, K., Senf, C., Hostert, P., & Pflugmacher, D. (2020). Characterizing spring phenology of temperate broadleaf forests using landsat and sentinel-2 time series. International Journal of Applied Earth Observation and Geoinformation, 92, 102172. https://doi.org/10.1016/j.jag.2020.102172
  • Lewińska, K. E., Buchner, J., Bleyhl, B., Hostert, P., Yin, H., Kuemmerle, T., & Radeloff, V. C. (2021). Changes in the grasslands of the Caucasus based on Cumulative Endmember Fractions from the full 1987–2019 landsat record. Science of Remote Sensing, 4, 100035. https://doi.org/10.1016/j.srs.2021.100035
  • Li, J., & Chen, B. (2020a). Global Revisit interval analysis of Landsat-8 -9 and Sentinel-2A -2B data for terrestrial monitoring. Sensors, 20(22), 6631. https://doi.org/10.3390/s20226631
  • Li, J., & Chen, B. (2020b). Global Revisit Interval Analysis of Landsat-8 -9 and Sentinel-2A -2B Data for Terrestrial Monitoring. Sensors, 20(22), 6631. https://doi.org/10.3390/s20226631
  • Liu, L., Xiao, X., Qin, Y., Wang, J., Xu, X., Hu, Y., & Qiao, Z. (2020). Mapping cropping intensity in China using time series landsat and sentinel-2 images and Google earth engine. Remote Sensing of Environment, 239, 111624. https://doi.org/10.1016/j.rse.2019.111624
  • Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., & Gascon, F. (2017). Sen2Cor for Sentinel-2. In L. Bruzzone, F. Bovolo, & J.A. Benediktsson (Eds.), Image and signal processing for remote sensing XXIII (p. 3). SPIE. https://doi.org/10.1117/12.2278218
  • Mardian, J., Berg, A., & Daneshfar, B. (2021). Evaluating the temporal accuracy of grassland to cropland change detection using multitemporal image analysis. Remote Sensing of Environment, 255, 112292. https://doi.org/10.1016/j.rse.2021.112292
  • Meng, X., Xie, S., Sun, L., Liu, L., & Han, Y. (2023). Evaluation of temporal compositing algorithms for annual land cover classification using Landsat time series data. International Journal of Digital Earth, 16(1), 2574–2598. https://doi.org/10.1080/17538947.2023.2230958
  • Nasiri, V., Deljouei, A., Moradi, F., Sadeghi, S. M. M., & Borz, S. A. (2022). Land use and land cover mapping using sentinel-2, landsat-8 satellite images, and Google earth engine: A comparison of two composition methods. Remote Sensing, 14(9). https://doi.org/10.3390/rs14091977
  • Nill, L., Grünberg, I., Ullmann, T., Gessner, M., Boike, J., & Hostert, P. (2022). Arctic shrub expansion revealed by Landsat-derived multitemporal vegetation cover fractions in the Western Canadian Arctic. Remote Sensing of Environment, 281, 113228. https://doi.org/10.1016/j.rse.2022.113228
  • Notarnicola, C. (2020). Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sensing of Environment, 243, 243. https://doi.org/10.1016/j.rse.2020.111781
  • Okujeni, A., Jänicke, C., Cooper, S., Frantz, D., Hostert, P., Clark, M., Segl, K., & van der Linden, S. (2021). Multi-season unmixing of vegetation class fractions across diverse Californian ecoregions using simulated spaceborne imaging spectroscopy data. Remote Sensing of Environment, 264, 112558. https://doi.org/10.1016/j.rse.2021.112558
  • Okujeni, A., Kowalski, K., Lewińska, K. E., Schneidereit, S., & Hostert, P. (2024). Multidecadal grassland fractional cover time series retrieval for Germany from the landsat and sentinel-2 archives. Remote Sensing of Environment, 302, 113980. https://doi.org/10.1016/j.rse.2023.113980
  • Pflugmacher, D., Rabe, A., Peters, M., & Hostert, P. (2019). Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. remote sensing of environment, 221, 583–595. https://doi.org/10.1016/j.rse.2018.12.001
  • Phan, T. N., Kuch, V., & Lehnert, L. W. (2020). Land cover classification using Google earth engine and random forest Classifier—the role of image composition. Remote Sensing, 12(15), 2411. https://doi.org/10.3390/rs12152411
  • Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M.(2020). Sentinel-2 data for land cover/use mapping: A review. Remote Sensing, 12(14). 12(14), 2291. https://doi.org/10.3390/rs12142291
  • Pickens, A. H., Hansen, M. C., Hancher, M., Stehman, S. V., Tyukavina, A., Potapov, P., Marroquin, B., & Sherani, Z. (2020). Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full landsat time-series. Remote Sensing of Environment, 243, 111792. https://doi.org/10.1016/j.rse.2020.111792
  • Pickens, A. H., Hansen, M. C., Stehman, S. V., Tyukavina, A., Potapov, P., Zalles, V., & Higgins, J. (2022). Global seasonal dynamics of inland open water and ice. Remote Sensing of Environment, 272, 112963. https://doi.org/10.1016/j.rse.2022.112963
  • Planet. (2024, February 5). Basemaps Overview. https://developers.planet.com/docs/basemaps/
  • Potapov, P., Hansen, M. C., Kommareddy, I., Kommareddy, A., Turubanova, S., Pickens, A., Adusei, B., Tyukavina, A., & Ying, Q. (2020). Landsat analysis ready data for global land cover and land cover change mapping. Remote Sensing, 12(3), 426. https://doi.org/10.3390/rs12030426
  • Potapov, P., Hansen, M. C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., Stolle, F., Harris, N., Song, X.-P., Baggett, A., Kommareddy, I., & Kommareddy, A. (2022). The global 2000-2020 land cover and land use change dataset derived from the landsat archive: First results. Frontiers in Remote Sensing, 3, 856903. https://doi.org/10.3389/frsen.2022.856903
  • Potapov, P. V., Turubanova, S. A., Tyukavina, A., Krylov, A. M., McCarty, J. L., Radeloff, V. C., & Hansen, M. C. (2015). Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full landsat archive. Remote Sensing of Environment, 159, 28–43. https://doi.org/10.1016/j.rse.2014.11.027
  • Qiu, S., Zhu, Z., Olofsson, P., Woodcock, C. E., & Jin, S. (2023). Evaluation of landsat image compositing algorithms. Remote Sensing of Environment, 285, 113375. https://doi.org/10.1016/j.rse.2022.113375
  • Qiu, S., Zhu, Z., Shang, R., & Crawford, C. J. (2021). Can landsat 7 preserve its science capability with a drifting orbit? Science of Remote Sensing, 4, 100026. https://doi.org/10.1016/j.srs.2021.100026
  • Radeloff, V. C., Roy, D. P., Wulder, M. A., Anderson, M., Cook, B., Crawford, C. J., Friedl, M., Gao, F., Gorelick, N., Hansen, M., Healey, S., Hostert, P., Hulley, G., Huntington, J. L., Johnson, D. M., Neigh, C., Lyapustin, A., Lymburner, L., Pahlevan, N. … Zhu, Z. (2024). Need and vision for global medium-resolution Landsat and Sentinel-2 data products. Remote Sensing of Environment, 300, 113918. https://doi.org/10.1016/j.rse.2023.113918
  • Rega, C., Short, C., Pérez-Soba, M., & Luisa Paracchini, M. (2020). A classification of European agricultural land using an energy-based intensity indicator and detailed crop description. Landscape and Urban Planning, 198, 103793. https://doi.org/10.1016/j.landurbplan.2020.103793
  • Roy, D. P., Ju, J., Kline, K., Scaramuzza, P. L., Kovalskyy, V., Hansen, M., Loveland, T. R., Vermote, E., & Zhang, C. (2010). Web-enabled landsat data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sensing of Environment, 114(1), 35–49. https://doi.org/10.1016/j.rse.2009.08.011
  • Roy, D. P., Wulder, M. A., Loveland, T. R., Ce, W., Allen, R. G., Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A., Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F., Belward, A. S., Bindschadler, R., Cohen, W. B., Gao, F. … Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. https://doi.org/10.1016/j.rse.2014.02.001
  • Ruefenacht, B. (2016). Comparison of three landsat TM compositing methods: A case study using modeled tree canopy cover. Photogrammetric Engineering & Remote Sensing, 82(3), 199–211. https://doi.org/10.14358/PERS.82.3.199
  • Rufin, P., Frantz, D., Ernst, S., Rabe, A., Griffiths, P., Özdoğan, M., & Hostert, P. (2019). Mapping cropping practices on a national scale using intra-annual Landsat Time Series Binning. Remote Sensing, 11(3), 232. https://doi.org/10.3390/rs11030232
  • Saunier, S., Pflug, B., Lobos, I., Franch, B., Louis, J., De Los Reyes, R., Debaecker, V., Cadau, E., Boccia, V., Gascon, F., & Kocaman, S. (2022). Sen2Like: Paving the way towards harmonization and fusion of optical data. Remote Sensing, 14(16), 3855. https://doi.org/10.3390/rs14163855
  • Schug, F., Frantz, D., Okujeni, A., van der Linden, S., & Hostert, P. (2020). Mapping urban-rural gradients of settlements and vegetation at national scale using sentinel-2 spectral-temporal metrics and regression-based unmixing with synthetic training data. Remote Sensing of Environment, 246, 111810. https://doi.org/10.1016/j.rse.2020.111810
  • Schug, F., Frantz, D., Wiedenhofer, D., Haberl, H., Virág, D., van der Linden, S., & Hostert, P.(2022a). High‐resolution mapping of 33 years of material stock and population growth in Germany using Earth Observation data. Journal of Industrial Ecology, jiec.27(1), 110–124. https://doi.org/10.1111/jiec.13343.
  • Schwieder, M., Buddeberg, M., Kowalski, K., Pfoch, K., Bartsch, J., Bach, H., Pickert, J., & Hostert, P. (2020). Estimating grassland parameters from Sentinel-2: A model comparison study. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88(5), 379–390. https://doi.org/10.1007/s41064-020-00120-1
  • Schwieder, M., Wesemeyer, M., Frantz, D., Pfoch, K., Erasmi, S., Pickert, J., Nendel, C., & Hostert, P. (2022). Mapping grassland mowing events across Germany based on combined sentinel-2 and landsat 8 time series. Remote Sensing of Environment, 269, 112795. https://doi.org/10.1016/j.rse.2021.112795
  • Senf, C., & Seidl, R. (2021). Mapping the coupled human and natural disturbance regimes of Europe’s forests. Nature sustainability, 4(26), 10.1038/s41893-020-00609-y.
  • Senf, C., Seidl, R., & Poulter, B. (2022). Post‐disturbance canopy recovery and the resilience of Europe’s forests. Global Ecology & Biogeography, 31(1), 25–36. https://doi.org/10.1111/geb.13406
  • Sfîcă, L., Beck, C., Nita, A., Voiculescu, M., Birsan, M., & Philipp, A. (2021). Cloud cover changes driven by atmospheric circulation in Europe during the last decades. International Journal of Climatology, 41(S1). https://doi.org/10.1002/joc.6841
  • Shang, R., Zhu, Z., Zhang, J., Qiu, S., Yang, Z., Li, T., & Yang, X. (2022). Near-real-time monitoring of land disturbance with harmonized Landsat 7–8 and sentinel-2 data. Remote Sensing of Environment, 278, 113073. https://doi.org/10.1016/j.rse.2022.113073
  • Silveira, E. M. O., Pidgeon, A. M., Farwell, L. S., Hobi, M. L., Razenkova, E., Zuckerberg, B., Coops, N. C., & Radeloff, V. C. (2023). Multi-grain habitat models that combine satellite sensors with different resolutions explain bird species richness patterns best. Remote Sensing of Environment, 295, 113661. https://doi.org/10.1016/j.rse.2023.113661
  • Skakun, S., Wevers, J., Brockmann, C., Doxani, G., Aleksandrov, M., Batič, M., Frantz, D., Gascon, F., Gómez-Chova, L., Hagolle, O., López-Puigdollers, D., Louis, J., Lubej, M., Mateo-García, G., Osman, J., Peressutti, D., Pflug, B., Puc, J., Richter, R. … Žust, L. (2022). Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2. Remote Sensing of Environment, 274, 112990. https://doi.org/10.1016/j.rse.2022.112990
  • Sudmanns, M., Tiede, D., Augustin, H., & Lang, S. (2020). Assessing global sentinel-2 coverage dynamics and data availability for operational earth observation (EO) applications using the EO-Compass. International Journal of Digital Earth, 13(7), 768–784. https://doi.org/10.1080/17538947.2019.1572799
  • Suess, S., van der Linden, S., Okujeni, A., Griffiths, P., Leitão, P. J., Schwieder, M., & Hostert, P. (2018). Characterizing 32 years of shrub cover dynamics in southern Portugal using annual landsat composites and machine learning regression modeling. Remote Sensing of Environment, 219, 353–364. https://doi.org/10.1016/j.rse.2018.10.004
  • Sulla-Menashe, D., Friedl, M. A., & Woodcock, C. E. (2016). Sources of bias and variability in long-term Landsat time series over Canadian boreal forests. Remote Sensing of Environment, 177, 206–219. https://doi.org/10.1016/j.rse.2016.02.041
  • Tang, X., Bullock, E. L., Olofsson, P., & Woodcock, C. E. (2020). Can VIIRS continue the legacy of MODIS for near real-time monitoring of tropical forest disturbance? Remote Sensing of Environment, 249, 112024. https://doi.org/10.1016/j.rse.2020.112024
  • Testa, S., Soudani, K., Boschetti, L., & Borgogno Mondino, E. (2018). MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests. International Journal of Applied Earth Observation and Geoinformation, 64, 132–144. https://doi.org/10.1016/j.jag.2017.08.006
  • Thieme, A., Yadav, S., Oddo, P. C., Fitz, J. M., McCartney, S., King, L., Keppler, J., McCarty, G. W., & Hively, W. D. (2020). Using NASA earth observations and Google earth engine to map winter cover crop conservation performance in the Chesapeake Bay watershed. Remote Sensing of Environment, 248, 111943. https://doi.org/10.1016/j.rse.2020.111943
  • Tian, F., Cai, Z., Jin, H., Hufkens, K., Scheifinger, H., Tagesson, T., Smets, B., Van Hoolst, R., Bonte, K., Ivits, E., Tong, X., Ardö, J., & Eklundh, L. (2021). Calibrating vegetation phenology from sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe. Remote Sensing of Environment, 260, 112456. https://doi.org/10.1016/j.rse.2021.112456
  • Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R., Vermote, E. F., & El Saleous, N. (2005). An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), 4485–4498. https://doi.org/10.1080/01431160500168686
  • Tzallas, V., Hatzianastassiou, N., Benas, N., Meirink, J., Matsoukas, C., Stackhouse, P., & Vardavas, I. (2019). Evaluation of CLARA-A2 and ISCCP-H cloud cover climate data records over Europe with ECA&D ground-based measurements. Remote Sensing, 11(2), 212. https://doi.org/10.3390/rs11020212
  • USGS. (2020, 9). Landsat Thematic Mapper No-Payload Correction Data | U.S. Geological Survey. https://www.usgs.gov/landsat-missions/landsat-thematic-mapper-no-payload-correction-data
  • Van Doninck, J., & Tuomisto, H. (2017). Influence of compositing criterion and data availability on pixel-based Landsat TM/ETM+ image compositing over Amazonian forests. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 10(3), 857–867. https://doi.org/10.1109/JSTARS.2016.2619695
  • Vermote, E. (2021). MODIS/Terra Surface Reflectance 8-Day L3 Global 250m SIN Grid V061. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD09Q1.061
  • Vogelmann, J. E., Gallant, A. L., Shi, H., & Zhu, Z. (2016). Perspectives on monitoring gradual change across the continuity of landsat sensors using time-series data. Remote Sensing of Environment, 185, 258–270. https://doi.org/10.1016/j.rse.2016.02.060
  • Wang, Z., Liu, J., Li, J., Meng, Y., Pokhrel, Y., & Zhang, H. (2021). Basin-scale high-resolution extraction of drainage networks using 10-m sentinel-2 imagery. Remote Sensing of Environment, 255, 112281. https://doi.org/10.1016/j.rse.2020.112281
  • Wiedenhofer, D., Schug, F., Gauch, H., Lanau, M., Drewniok, M. P., Baumgart, A., Virág, D., Watt, H., Serrenho, A. C., Tingley, D. D., Haberl, H., & Frantz, D. (2024). Mapping material stocks of buildings and mobility infrastructure in the United Kingdom and the Republic of Ireland. Resources, Conservation and Recycling, 206, 107630. https://doi.org/10.1016/j.resconrec.2024.107630
  • Wilson, A. M., Jetz, W., & Loreau, M. (2016). Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLOS Biology, 14(3), e1002415. https://doi.org/10.1371/journal.pbio.1002415
  • Wolfe, R. E., Roy, D. P., & Vermote, E. (1998). MODIS land data storage, gridding, and compositing methodology: Level 2 grid. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1324–1338. https://doi.org/10.1109/36.701082
  • Woodcock, C. E., Loveland, T. R., Herold, M., & Bauer, M. E. (2020). Transitioning from change detection to monitoring with remote sensing: A paradigm shift. Remote Sensing of Environment, 238, 111558. https://doi.org/10.1016/j.rse.2019.111558
  • Wulder, M. A., Hilker, T., White, J. C., Coops, N. C., Masek, J. G., Pflugmacher, D., & Crevier, Y. (2015). Virtual constellations for global terrestrial monitoring. Remote Sensing of Environment, 170, 62–76. https://doi.org/10.1016/j.rse.2015.09.001
  • Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., & Woodcock, C. E. (2012). Opening the archive: How free data has enabled the science and monitoring promise of landsat. Remote Sensing of Environment, 122, 2–10. https://doi.org/10.1016/j.rse.2012.01.010
  • Wulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M. C., Johnson, D. M., Healey, S., Zhu, Z., Scambos, T. A., Pahlevan, N., Hansen, M., Gorelick, N., Crawford, C. J., Masek, J. G., Hermosilla, T., White, J. C., Belward, A. S., Schaaf, C., Woodcock, C. E. … Cook, B. D. (2022). Fifty years of Landsat science and impacts. Remote Sensing of Environment, 280, 113195. https://doi.org/10.1016/j.rse.2022.113195
  • Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., Fosnight, E. A., Shaw, J., Masek, J. G., & Roy, D. P. (2016). The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment, 185, 271–283. https://doi.org/10.1016/j.rse.2015.11.032
  • Xie, Y., & Lark, T. J. (2021). Mapping annual irrigation from Landsat imagery and environmental variables across the conterminous United States. Remote Sensing of Environment, 260, 112445. https://doi.org/10.1016/j.rse.2021.112445
  • Xu, F., Li, Z., Zhang, S., Huang, N., Quan, Z., Zhang, W., Liu, X., Jiang, X., Pan, J., & Prishchepov, A. V. (2020). Mapping Winter wheat with combinations of temporally aggregated sentinel-2 and landsat-8 data in Shandong Province, China. Remote Sensing, 12(12), 2065. https://doi.org/10.3390/rs12122065
  • Yan, L., & Roy, D. (2018). Large-area gap filling of landsat reflectance time series by spectral-angle-mapper based spatio-temporal similarity (SAMSTS). Remote Sensing, 10(4), 609. https://doi.org/10.3390/rs10040609
  • Yang, X., Qin, Q., Yésou, H., Ledauphin, T., Koehl, M., Grussenmeyer, P., & Zhu, Z. (2020). Monthly estimation of the surface water extent in France at a 10-m resolution using sentinel-2 data. Remote Sensing of Environment, 244, 111803. https://doi.org/10.1016/j.rse.2020.111803
  • Yang, X., Qiu, S., Zhu, Z., Rittenhouse, C., Riordan, D., & Cullerton, M. (2023). Mapping understory plant communities in deciduous forests from sentinel-2 time series. Remote Sensing of Environment, 293, 113601. https://doi.org/10.1016/j.rse.2023.113601
  • Yao, F., Wang, J., Wang, C., & Crétaux, J.-F. (2019). Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery. Remote Sensing of Environment, 232, 111210. https://doi.org/10.1016/j.rse.2019.111210
  • Yin, H., Brandão, A., Buchner, J., Helmers, D., Iuliano, B. G., Kimambo, N. E., Lewińska, K. E., Razenkova, E., Rizayeva, A., Rogova, N., Spawn, S. A., Xie, Y., & Radeloff, V. C. (2020). Monitoring cropland abandonment with Landsat time series. Remote Sensing of Environment, 246, 111873. https://doi.org/10.1016/j.rse.2020.111873
  • Zanaga, D., Van De Kerchove, R., Daems, D., De Keersmaecker, W., Brockmann, C., Kirches, G., Wevers, J., Cartus, O., Santoro, M., Fritz, S., Lesiv, M., Herold, M., Tsendbazar, N.-E., Xu, P., Ramoino, F., & Arino, O. (2022). ESA WorldCover 10 m 2021 v200 (Version v200) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7254221
  • Zhai, Y., Roy, D. P., Martins, V. S., Zhang, H. K., Yan, L., & Li, Z. (2022). Conterminous United States landsat-8 top of atmosphere and surface reflectance tasseled cap transformation coefficients. Remote Sensing of Environment, 274, 112992. https://doi.org/10.1016/j.rse.2022.112992
  • Zhang, H., Song, Y., Han, C., & Zhang, L. (2021). Remote sensing image spatiotemporal fusion using a generative adversarial network. IEEE Transactions on Geoscience and Remote Sensing, 59(5), 4273–4286. https://doi.org/10.1109/TGRS.2020.3010530
  • Zhang, Y., Woodcock, C. E., Arévalo, P., Olofsson, P., Tang, X., Stanimirova, R., Bullock, E., Tarrio, K. R., Zhu, Z., & Friedl, M. A. (2022). A global analysis of the spatial and temporal variability of usable landsat observations at the pixel scale. Frontiers in Remote Sensing, 3, 894618. https://doi.org/10.3389/frsen.2022.894618
  • Zhu, X., Helmer, E. H., Gao, F., Liu, D., Chen, J., & Lefsky, M. A. (2016). A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172, 165–177. https://doi.org/10.1016/j.rse.2015.11.016
  • Zhu, Z., Qiu, S., & Ye, S. (2022). Remote sensing of land change: A multifaceted perspective. Remote Sensing of Environment, 282, 113266. https://doi.org/10.1016/j.rse.2022.113266
  • Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in landsat imagery. Remote Sensing of Environment, 118, 83–94. https://doi.org/10.1016/j.rse.2011.10.028
  • Zhu, Z., & Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available landsat data. Remote Sensing of Environment, 144, 152–171. https://doi.org/10.1016/j.rse.2014.01.011
  • Zhu, Z., Zhang, J., Yang, Z., Aljaddani, A. H., Cohen, W. B., Qiu, S., & Zhou, C. (2020). Continuous monitoring of land disturbance based on landsat time series. Remote Sensing of Environment, 238, 111116. https://doi.org/10.1016/j.rse.2019.03.009
  • Zillmann, E., Gonzalez, A., Montero Herrero, E. J., van Wolvelaer, J., Esch, T., Keil, M., Weichelt, H., & Garzon, A. M. (2014). Pan-European grassland mapping using seasonal statistics from multisensor image time series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8), 3461–3472. https://doi.org/10.1109/JSTARS.2014.2321432
  • Zupanc, A. (2017). Improving Cloud Detection with Machine Learning. https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13