487
Views
10
CrossRef citations to date
0
Altmetric
Review Article

An Insight into Processing and Properties of Smart Carbon Nanotubes Reinforced Nanocomposites

ORCID Icon, , , , , ORCID Icon, & ORCID Icon show all
Pages 40-55 | Received 10 May 2021, Accepted 23 Aug 2021, Published online: 31 Aug 2021

References

  • Marc Monthioux VL, Kuznetsov VL. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes? Carbon. 2006;44(9):1621–1623.
  • Boehm HP. The first observation of carbon nanotubes. Carbon. 1997;35(4):581–584.
  • Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363(6430):603–605.
  • Bethune DS, Kiang CH, De Vries MS, et al. Cobalt catalysed growth of carbon nanotubes with singleatomic-layer walls. Nature. 1993;363(6430):605–607.
  • Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition. J Cryst Growth. 1976;32(3):335–349.
  • Tersoff J, Ruoff RS. Structural properties of a carbon-nanotube crystal. Phys Rev Lett. 1994;73(5):676–679.
  • Iijima S. Helical microtubules of graphite carbon. Nature. 1991;354(6348):56–58.
  • Bacon R, Bowman JC. Production and properties of graphite whiskers. Bull Am Phys Soc. 1957;2:131.
  • Hughes TV, Chambers CR. 1889. US Patent 405480
  • Schu¨tzenberger P, Schu¨tzenberger L. Sur quelques faits relatifs a` l’histoire du carbone. C R Acad Sci Paris. 1890;111:774–778.
  • Pe´labon C, Pe´labon H. Sur une varie´te´ de carbone filamenteux. C R Acad Sci Paris. 1903;137:706–708.
  • Radushkevich LV, Lukyanovich VM. O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Zurn Fisic Chim. 1952;26:88–95.
  • Hillert M, Lange N. The structure of graphite filaments. Z Kristallogr. 1958;111:24–34.
  • Baker RTK, Harris PS, Thomas RB, et al. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J Catal. 1973;30(1):86–95.
  • Gupta AK, Harsha SP. analysis of mechanical properties of carbon nanotube reinforced polymer composites using continuum mechanics approach. Procedia Mater Sci. 2014;6:18–25.
  • Mehar K, Panda SK. Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: experimental, numerical, and simulation. Adv Polym Technol. 2017;37(6):1–15.
  • Pfaendner R. Nanocomposites: industrial opportunity or challenge? Vol. 95. Elsevier; 2010. p. 369–373. https://doi.org/http://dx.doi.org/10.1016/j.polymdegradstab.2009.11.019
  • Dai, Z., Liu, L., Qi, X. et al. Three-dimensional Sponges with Super Mechanical Stability: Harnessing True Elasticity of Individual Carbon Nanotubes in Macroscopic Architectures. Sci Rep 6, 18930 (2016). https://doi.org/https://doi.org/10.1038/srep18930.
  • Yu M-F, Files BS, Arepalli S, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett. 2000;84(24):5552–5555.
  • Cao AY, Dickrell PL, Sawyer WG. Super-compressible foamlike carbon nanotube films. Science. 2005;310(5752):1307–1310.
  • Qu L, Dai L, Stone M, et al. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science. 2008;322(5899):238–242.
  • Xu M, Futaba DN, Yamada T, et al. Carbon nanotubes with temperature-invariant viscoelasticity from –196 ° to 1000 °C. Science. 2010;330(6009):1364–1368.
  • De Volder MFL, De Coster J, Reynaerts D, et al. High-damping carbon nanotube hinged micromirrors. Small. 2012;8, 2006–2010.
  • Ren L, Pint CL, Booshehri LG, et al. Carbon nanotube terahertz polarizer. Nano Lett. 2009;9(7):2610–2613.
  • Aliev AE, Oh J, Kozlov ME, et al. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science. 2009;323(5921):1575–1578.
  • Lima M, Li N, Jung de Andrade M, et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science. 2012;338(6109):928–932.
  • Mizuno K, Ishii J, Kishida H, et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci. 2009;106(15):6044–6047.
  • Xiao L, Chen Z, Feng C, et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 2008;8(12):4539–4545.
  • Lordi V, Yao N. Molecular mechanics of binding in carbon-nanotube–polymer composites. J Mater Res. 2011;15(12):2770–2779.
  • Park C, Ounaies Z, Watson KA, et al. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett. 2002;364(3–4):303–308.
  • Tariq F, Shifa M, Baloch RA. Mechanical and thermal properties of multi-scale carbon nanotubes-carbon fiber-epoxy composite. Arabian J Sci Eng. 2018;43(11):5937–5948.
  • Ahmadi SJ, Huang YD, Li WJ. Synthetic routes, properties and future applications of polymer-layered silicate nanocomposites. J Mater Sci. 2004;39(6):1919–1925.
  • Qutubuddin S, Fu X. Polymer-clay nanocomposites: synthesis and properties. Nano Surface Chem. 2001;653–673. DOI:https://doi.org/10.1201/9780203908488.CH17.
  • Mir IA, Kumar D. Development of polyaniline/epoxy composite as a prospective solder replacement material. Int J Polym Mater. 2010;59(12):994–1007.
  • Martin CA, Sandler J, Windle AH. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer. 2005;46(3):877–886.
  • Barrau S, Demont P, Maraval C. Glass transition temperature depression at the percolation threshold in carbon nanotube–epoxy resin and polypyrrole–epoxy resin composites. Macromol Rapid Commun. 2005;26(5):390–394.
  • Barrau S, Demont P, Peigney A. Effect of palmitic acid on the electrical conductivity of carbon nanotubes−epoxy resin composites. Macromolecules. 2003;36(26):9678–9680.
  • Heimann M, Wirts-Ruetters M, Boehme B; Wolter, Investigations of carbon nanotubes epoxy composites for electronics packaging, IEEE, ECTC, 2008.
  • Saito Y, Uemura S. Field emission from carbon nanotubes and its application to electron sources. Carbon. 2000;38(2):169–182.
  • Michael A. Meador, Chair Bradley Files Jing Li Harish Manohara Dan Powell Emilie J. Siochi. National Aeronautics and Space Administration. DRAFT Nanotechnology Roadmap Technology Area 10. November 2010. cited on 27th April, 2021. Available: https://www.nasa.gov/pdf/501325main_TA10-Nanotech-DRAFT-Nov2010-A.pdf.
  • Malsch I. The just war theory and the ethical governance of research. Sci Eng Ethics. 2013;19(2):461–486.
  • Baughman RH, Zakhidov AA, de, Heer WA. Carbon Nanotubes–the route toward applications. Science. 2002;297(5582):787–792.
  • Zhang XF, Sreekumar TV, Liu T, et al. Properties and Structure of Nitric Acid Oxidized single wall carbon nanotube films. J Phys Chem B. 2004;108(42):16435–16440.
  • Balasubramanian K, Burghard M. Biosensors based on carbon nanotubes. Anal Bioanal Chem. 2006;385(3):452–468.
  • Boero C, Olivo J, Giovanni DM. New approaches for carbon nanotubes-based biosensors and their application to cell culture monitoring. IEEE Trans Biomed Circuits Syst. 2012;6(5):479–485.
  • Hasirci V, Hasirci N. Carbon as a biomaterial. Fundam Biomater. 2018;6:83–94.
  • Sireesha M, Veluru Jagadeesh BA, Kiran SK, et al. A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites. 2018;4(2):36–57.
  • Yang N, Chen X, Ren T, et al. Carbon nanotube based biosensors. Sens Actuators B Chem. 2015;207:690–715.
  • Zaporotskova IV, Boroznina NP, Parkhomenko YN. Carbon nanotubes: sensor properties. A Review, Modern Electron Mater. 2017;2(4):95–105.
  • Yingyue Zhu, Libing Wang and Chuanlai Xu. Book Name: Carbon Nanotubes - Growth and Applications. Book Chapter: Carbon Nanotubes in Biomedicine and Biosensing. Published: August 9th 2011. DOI: https://doi.org/10.5772/16558.
  • Zhu Z. An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 2017;9(3):1–24.
  • Sanginario A, Miccoli B, Demarchi D. Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors (Basel). 2017;7(9):1–23.
  • Kaur S, Mehra NK, Jain K, Jain NK. Development and evaluation of targeting ligand-anchored CNTs as prospective targeted drug delivery system. Artif Cells Nanomed Biotechnol. 2017 Mar;45(2):242-250. doi: https://doi.org/10.3109/21691401.2016.1146728. Epub 2016 Feb 18. PMID: 26890213.
  • Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target. 2015;24(3):1–13.
  • Meng J, Agrahari V, Youm I. Advances in targeted drug delivery approaches for the central nervous system tumors: the inspiration of nanobiotechnology. J Neuroimmune Pharmacol. 2016;12(1):84–98.
  • Xiaole Q, Rui Y, Yuchao Fan H, et al. Galactosylated chitosan-grafted multiwall carbon nanotubes for pH-dependent sustained release and hepatic tumor-targeted delivery of doxorubicin in vivo, Colloids and surfaces B. Biointerfaces. 2015;133:314–322.
  • Son KH, Hong JH, Lee JW. Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomedicine. 2016;11:5163–5185.
  • Jakubinek MB, Ashrafi B, Zhang Y. Single-walled carbon nanotube–epoxy composites for structural and conductive aerospace adhesives. Compos Part B. 2015;69:87–93.
  • Islam MS, Deng Y, Tong L, et al. Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: towards next generation aerospace composites and energy storage applications. Carbon. 2016;96:701–710.
  • Joshi M, Chatterjee U. Polymer nanocomposite: an advanced material for aerospace applications. Advanced Composite Materials for Aerospace Engineering. 2016;241–264. https://doi.org/https://doi.org/10.1016/B978-0-08-100037-3.00008-0.
  • Scarponi C. Carbon–carbon composites in aerospace engineering. Advanced Composite Materials for Aerospace Engineering. 2016;385–412. .
  • Siochi EJ, Harrison JS. Structural nanocomposites for aerospace applications. Eng Nanomater Aerospace. 2015;40(10):829–835.
  • de Villoria RG, Hallander P, Ydrefors L, et al. n-plane strength enhancement of laminated composites via aligned carbon nanotube interlaminar reinforcement. Sci Technol. 2016;133:33–39.
  • Agarwal A, Bakshi SR, Lahiri D. Carbon nanotubes: reinforced metal matrix composites. Taylor & Francis; 2018.
  • Gardner JM, Sauti G, Kim JW, et al. 3-D printing of multifunctional carbon nanotube yarn reinforced components. Elsevier, Additive. 2016;12:38–44.
  • Ahmad I, Yazdani B, Zhu Y. Recent advances on carbon nanotubes and graphene reinforced ceramics nanocomposites. Nanomaterials. 2015;5(1):90–114.
  • Dai G, Mishnaevsky Jr. L Jr. Carbon nanotube reinforced hybrid composites: computational modeling of environmental fatigue and usability for wind blades. Compos Part B Eng. 2015;78:349–360.
  • Beigbeder A, Degee P, Conlan SL, et al. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. Biofouling. 2008;24(4):291–302.
  • Wu Z, et al. Transparent, conductive carbon nanotube films. Science. 2004;305(5688):1273–1276.
  • De S, Coleman JN. The effects of percolation in nanostructured transparent conductors. MRS Bull. 2011;36(10):774–781.
  • Roy A, Sreejith AS. Effect of multi-walled carbon nanotubes on automotive and aerospace applications- case study. IJETST. 2017;4(4):5105–5113.
  • Aithal PS, Aithal S. Nanotechnological innovations & business environment for indian automobile sector: a futuristic approach. IJSRME. 2016;1(1):296–308.
  • Lalwani G, Gopalan A, D’Agati M. Porous three‐dimensional carbon nanotube scaffolds for tissue engineering Wiley. Res Part A. 2015;103(10):3212–3225.
  • Padmanabhan J, Kyriakides TR. Nanomaterials, inflammation, and tissue engineering. Wiley, Nanomed Nanobiotechnol. 2015;7(3):355–370.
  • Gojny FH, Schulte K. Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Compos Sci Technol. 2004;64(15):2303–2308.
  • Marchesan S, Bosi S, Alshatwi A, et al. Carbon nanotubes for organ regeneration: an electrifying performance. Nano Today. 2016;11(4):398–401.
  • Teoh GZ, Klanrit P, Kasimatis M. Role of nanotechnology in development of artificial organs. Minerva Med. 2015;106(1):17–33.
  • Tao K, Yang S, Grunlan JC, et al. Effects of carbon nanotube fillers on the curing processes of epoxy resin‐based composites. J Appl Polym Sci. 2006;102(6):5248–5254.
  • Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem. 2006;384(3):620–630.
  • Choi YE, Kwak JW, Park JW. Nanotechnology for early cancer detection. Sensors (Basel). 2010;10(1):428–455.
  • Kam NWS, O’Connell M, Wisdom JA, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U.S.A. 2005;102(33):11600–11605.
  • Heller DA, Baik S, Eurell TE, et al. Single‐Walled Carbon nanotube spectroscopy in live cells: towards long‐term labels and optical sensors. Adv Mater. 2005;17(23):2793–2799.
  • De La Zerda A, Zavaleta C, Keren S, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotechnology. 2008;3(9):557–562.
  • Li G, Liao JM, Hu GQ, et al. Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosens Bioelectron. 2005;20(10):2140–2144.
  • Baj-Rossi, C.; Micheli, G.D.; Carrara, S. Electrochemical Detection of Anti-Breast-Cancer Agents in Human Serum by Cytochrome P450-Coated Carbon Nanotubes. Sensors 2012, 12, 6520-6537. https://doi.org/https://doi.org/10.3390/s120506520.
  • Liu FL, Xiao P, Fang HL, et al. Single-walled carbon nanotube-based biosensors for the detection of volatile organic compounds of lung cancer. Phys E Low Dimens Syst Nanostruct. 2011;44(2):367–372.
  • Yuichi Tsujita, Kenzo Maehashi, Kazuhiko Matsumoto, Miyuki Chikae, Yuzuru Takamura and Eiichi Tamiya. Microfluidic and Label-Free Multi-Immunosensors Based on Carbon Nanotube Microelectrodes. Japanese Journal of Applied Physics. Volume 48, 06FJ02. https://doi.org/https://doi.org/10.1143/JJAP.48.06FJ02.
  • Wen L, Ding W, Yang S. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes. Biomaterials. 2015;75:163–173.
  • Virani NA, Davis C, McKernan P, Hauser P, Hurst RE, Slaton J, Silvy RP, Resasco DE, Harrison RG. Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer. Nanotechnology. 2018 Jan 19;29(3):035101. doi: https://doi.org/10.1088/1361-6528/aa9c0c. PMID: 29160225.
  • Shahzada Ahmad SA, Agnihotry SA. Nanocomposite polymer electrolytes by in situ polymerization of methyl methacrylate: for electrochemical applications. Wiley Inter Sci. 2007;107:3042–3048.
  • Oyama T. (2014) Cross-Linked Polymer Synthesis. In: Kobayashi S., Müllen K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/https://doi.org/10.1007/978-3-642-36199-9_181-1.
  • Ahmad S, Ahmad S, Agnihotry SA. Synthesis and characterization of in situ prepared poly (methyl methacrylate) nanocomposites. Bull Mater Sci. 2007;30(1):31–35.
  • Burgos M, Langlet M. Condensation and densification mechanism of Sol-Gel TiO2 layers at low temperature. J Sol–Gel Sci Technol. 1999;16(3):267–276.
  • Coleman JN, Khan U, Blau WJ, et al. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon. 2006;44(9):1624–1652.
  • Liu Y, Lee JY, Hong LJ. In situ preparation of poly(ethylene oxide)-SiO2 composite polymer electrolytes. J Power Sources. 2004;129(2):303–311.
  • Bohnke O, Frand G, Rezrazi M, et al. Fast ion transport in new lithium electrolytes gelled with PMMA. 2. Influence of lithium salt concentration. Solid State Ion. 1993;66(1–2):105–112.
  • Battisti D, Nazri G, Kalssen B, et al. Vibrational studies of lithium perchlorate in propylene carbonate solutions. Phys Chem. 1993;97(22):5826.
  • Hussein MA, Albeladi HK, As E, et al. Cross-linked poly(methyl methacrylate)/multiwall carbon nanotube nanocomposites for environmental treatment. Adv Polym Technol. 2018;37(8):1–12.
  • Low CTJ, Wills RGA, Walsh FC. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf Coat Technol. 2006;201(1–2):371–383.
  • Hovestad A, Janssen LJJ. Electrochemical codeposition of inert particles in a metallic matrix. J, Appl Electrochem. 1995;25(6):519–527.
  • Vasilakopoulos D, Bouroushian M. Electrochemical codeposition of PMMA particles with zinc. Surf Coat Technol. 2010;205(1):110–117.
  • Simacek P, Heider D, Advani SG. Post-filling flow in vacuum assisted resin transfer molding processes: theoretical analysis. Compos Part A Appl Sci Manuf. 2009;40(6–7):913–924.
  • Advani SG, Newark, DE (US), Fuping Zhou, Clinton, NJ (US), US 2009/02731 O7 A1, 2009, 5.
  • Kuentzer N, Simacek P, Advani SG. Correlation of void distribution to VARTM manufacturing techniques. Compos Part A Appl Sci Manuf. 2007;38(3):802–813.
  • Markicevic B, Litchfield D, Heider D. Role of flow enhancement network during filling of fibrous porous media. J Porous Media. 2005;8(3):281–297.
  • Heider D, And Gillespie JW Jr. Automated vartm processing of large-scale composite structures. J Adv Mater. 2004;36:4.
  • Mathur R, Heider D, Hoffmann C, Gillespie. Flow front measurements and model validation in the vacuum assisted resin transfer molding process. Polym Composites. 2001;22(4):477–490.
  • Yoon K, Simacek CH, Heider P. Infusion design methodology for thick-section, low-permeability preforms using inter-laminar flow media. Compos Part A Appl Sci Manuf. 2007;38(2):525–534.
  • Nash N, Roy D, Young T.M., Stanley W.F. Fabrication and Characterisation of Carbon/Benzoxazine Composites With Improved Fracture Toughness Using Liquid Resin Infusion. Conference: 34th Risø International Symposium on Materials Science: Processing of fibre composites – challenges for maximum materials performance. At: Riso, Denmark. September 2013. Available: https://www.researchgate.net/publication/270758329_Fabrication_and_Characterisation_of_CarbonBenzoxazine_Composites_With_Improved_Fracture_Toughness_Using_Liquid_Resin_Infusion
  • Akif Yalcinkaya M, Murat Sozer E, Cengiz Altan M. Fabrication of high quality composite laminates by pressurized and heated-VARTM. Composites: Part A. 2017;102:336–346.
  • Kim JH, Hwang J-Y, Hwang HR. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics. Sci Rep. 2018;8(1):1375.
  • Weikang L, Dichiara A, Bai J. Carbon nanotube-graphene nanoplatelet hybrids as high performance multifunctional reinforcements in epoxy composites. Compos Sci Technol. 2013;74:221–227.
  • Zhou HW, Mishnaevsky L Jr., Yi HY, et al. Carbon fiber/carbon nanotube reinforced hierarchical composites: effect of CNT distribution on shearing strength. Compos Part B Eng. 2016;88:201–211.
  • Yang M, Koutsos V, Zaiser M. Interactions between polymers and carbon nanotubes: a molecular dynamics study. J Phys Chem. 2005;109(20):10009–10014.
  • Choi J, Park S, Cheng J. Amphiphilic comb-like polymer for harvest of conductive nano-cellulose. Colloids Surfaces B. 2011;89:161–166.
  • Mark JE. Ceramic‐reinforced polymers and polymer‐modified ceramics. Polym Eng Sci. 1996;36.
  • Fukushima T, Kosaka A, Yamamoto Y, et al. Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids. small. 2006;2(4):554–560.
  • Jain N, Gupta E, Kanu NJ. Plethora of Carbon nanotubes applications in various fields–A state-of-the-art-review. Smart Sci. 2021;1–24. DOI:https://doi.org/10.1080/23080477.2021.1940752
  • Kanu NJ, Gupta E, Vates UK, et al. Electrospinning process parameters optimization for biofunctional curcumin/gelatin nanofibers. Mater Res Express. 2020;7(3):35022.
  • Lal A, Kanu NJ. The nonlinear deflection response of CNT/nanoclay reinforced polymer hybrid composite plate under different loading conditions. IOP Conf Ser Mater Sci Eng. 2020;814:12033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.