56
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design of adaptive-PID-Smith control in the two-mixing tank series

, , , , , , , & show all
Received 24 Oct 2023, Accepted 29 Apr 2024, Published online: 08 May 2024

References

  • Smith R. Chemical process design and integration. USA: John Wiley & Sons, Ltd.; 2005. p. 77–96.
  • Fogler HS. Essentials of chemical reaction engineering. 2nd ed. USA: Prentice Hall; 2018. p. 12–14.
  • Hermawan YD, Haryono G. Dynamic simulation and composition control in a 10 L mixing tank. Reaktor. 2012;14(2):95–100. doi: 10.14710/reaktor.14.2.95-100
  • Marlin TE. Designing processes and control systems for dynamic performance. USA: McGraw-Hill; 1995 2nd. p. 97–337.
  • Smith CA; Corripio AB. Principles and practice of automatic process control. 2nd ed. USA: John Wiley & Sons, Inc; 1997. p. 1–367.
  • Stephanopoulos G. Chemical process control: an introduction to theory and practice. New Jersey: PTR. Prentice-Hall, Inc. A Simon and Shuster Company; 1984. p. 1–393.
  • Luyben WL. Plantwide dynamic simulators in chemical processing and control. USA: Marcel Dekker, Inc; 2002. p. 25–33.
  • Huang HP, Chen CC. Auto-tuning of PID controllers for second order unstable process having dead time. J Chem Eng Jpn. 1999;32(4):486–497. doi: 10.1252/jcej.32.486
  • Izci D, Ekinci S. Optimizing three-tank liquid level control: insights from prairie dog optimization. Int J Robot Contrl Syst, ASCEE. 2023;3(3):599–608. doi: 10.31763/ijrcs.v3i3.1116
  • Hermawan YD. Implementation of process reaction curve for tuning of temperature control parameters in a 10 L stirred tank heater. J Mater Sci Eng A. 2011;9:572–577. doi: 10.17265/2161-6213/2011.09.017
  • Hermawan YD, Puspitasari M. Tuning of pid controller using open loop on off method and closed loop dynamic simulation in a 10 L mixing tank. Contemp Eng Sci. 2018;11(101):5027–5038. doi: 10.12988/ces.2018.810550
  • Hermawan YD, Yusuf Y, Andari ER, et al. Implementation of adaptive-PID control in a 10 L stirred tank heater. J East China Univ Sci Technol. 2023;66(3):25–38. doi: 10.5281/ZENODO.8425618
  • Alvaro RJ, Maria AM, David FB. Level control in a system of tanks in interacting mode using xcos software. Contemp Eng Sci. 2018;11:63–70. doi: 10.12988/ces.2018.712206
  • Banu US, Uma G. Fuzzy gain scheduled continuous stirred tank reactor with particle swarm optimization based PID control minimizing integral square error. Instrum Sci Technol. 2008;36:394–409. doi: 10.1080/10739140802151499
  • Darajat AU, Istiqphara S. Sistem Kontrol Ketinggian Air pada Sistem Dua Tanki. Jurnal Teknik Elektro dan Vokasional. 2021;7(1):37–44. ( in Indonesian) doi: 10.24036/jtev.v7i1.111893
  • Fernandes LSL, Moraes Filho FC, Paulo JBA, et al. Gain scheduling adaptive control applied to a particular mixer-settler equipment. Control Eng Pract. 2013;21(8):1121–1127. doi: 10.1016/j.conengprac.2013.04.005
  • Kanthalakshmi S. Experimental validation of adaptive control techniques for conical tank system. ICCAP. 2021:1–9. doi: 10.4108/eai.7-12-2021.2314734
  • Madu C, Fadayini OM, Folami NA, et al. Controller design of a stirred mixing tank using the model reference adaptive control scheme and mit rule. Int J Advances Engg Manag. 2021;3(7):1623–1629. doi: 10.35629/5252-030716231629
  • Pham TT, Nguyen CN. Adaptive fuzzy proportional integral sliding mode control for two-tank interacting system. J Eng Technol Sci. 2022;54(3):220310–220592. doi: 10.5614/j.eng.technol.sci.2022.54.3.10
  • Tunjung D, Prajitno P, Handoko D. Temperature and water level control system in water thermal mixing process using adaptive fuzzy PID controller. J Phys Conf Ser. 2021;1816(1):012032–7. doi: 10.1088/1742-6596/1816/1/012032
  • Naba A. Adaptive control with approximated policy search approach. J Eng Technol Sci. 2010;42(1):17–38. doi: 10.5614/itbj.eng.sci.2010.42.1.2
  • Juneja PK, Ray AK, Mitra R. Various controller design and tuning methods for a first order plus dead time process. Int J Comput Sci Communicat. 2010;1(2):161–165. Available from: http://www.csjournals.com/IJCSC/PDF1-2/34.pdf
  • Karan S, Dey C, Mukherjee S. Simple internal model control based modified smith predictor for integrating time delayed processes with real-time verification. ISA Trans. 2021;121:240–257. doi: 10.1016/j.isatra.2021.04.008
  • Kravaris C, Wright RA. Deadtime compensation for nonlinear processes. AichE J. 1989;35(9):1535–1542. doi: 10.1002/aic.690350914
  • Madhuranthakam CR, Elkamel A, Budman H. Optimal tuning of PID controllers for FOPTD, SOPTD and SOPTD with lead processes. Chem Eng Process: Process Intensificat. 2008;47(2):251–264. doi: 10.1016/j.cep.2006.11.013
  • Mejía C, Salazar E, Camacho O. A comparative experimental evaluation of various Smith predictor approaches for a thermal process with large dead time. Alexandria Eng J. 2022;61(12):9377–9394. doi: 10.1016/j.aej.2022.03.047
  • Pai NS, Chang SC, Huang CT. Tuning PI/PID controllers for integrating processes with deadtime and inverse response by simple calculations. J Process Control. 2010;20(6):726–733. doi: 10.1016/j.jprocont.2010.04.003
  • Panda RC, Hung SB, Yu CC. An integrated modified Smith predictor with PID controller for integrator plus deadtime processes. Ind Eng Chem Res. 2006;45:1397–1407. doi: 10.1021/ie0580194
  • Salavati S, Grigoriadis K, Franchek M. An explicit robust stability condition for uncertain time-varying first-order plus dead-time systems. ISA Trans. 2022;126:171–179. doi: 10.1016/j.isatra.2021.07.046
  • Stojic MR, Matijevic FS, Draganovic LS. A robust Smith predictor modified by internal models for integrating process with dead time. IEEE Trans Automat Contr. 2001;46(8):1293–1298. doi: 10.1109/9.940937
  • Vodencarevic A, Cui Y, Song G. Protective effects of N-acetylcysteine on homocysteine induced injury in chick embryos. Front Biosci (Elite Ed). 2010 Mar 17–19;2(3):940–947. https://www.iaeng.org/publication/IMECS2010/IMECS2010_pp940-945.pdf.
  • Luyben WL, Tyreus BD, Luyben ML. Plantwide process control. New York: McGraw Hill; 1999. p. 3–51.
  • Hermawan YD, Nandari WW, Irfandy F, et al. Process dynamic of two-thermal-tank-series with dead time. EKSERGI. 2020;17(2):45–50. doi: 10.31315/e.v17i2.3700
  • Kristanto D, Hermawan YD. Comparative analysis between PI conventional and cascade control in heater-PFR series. Reaktor. 2020;20(3):129–137. doi: 10.14710/reaktor.20.3.129-137
  • Vieira EB, Busch WF, Prata DM, et al. Application of Scilab/Xcos for process control applied to chemical engineering educational projects. In: Computer application in engineering education. Wiley Periodicals, Inc; 2018. pp. 1–12. doi: 10.1002/cae.22065
  • Scilab: Free and Open-Source software for numerical computation. 2023. https://www.scilab.org/
  • Luyben WL, Luyben ML. Essentials of process control. USA: McGraw-Hill; 1997. p. 125–126.
  • Seborg DE, Edgar TF, Mellichamp DA, et al. Process dynamics and control. 4th. ed. USA: John Wiley & Sons, Inc; 2017. p. 279–293.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.