25
Views
0
CrossRef citations to date
0
Altmetric
Research Article

VO2 based multi-functional ultra-wideband terahertz meta-absorber for EMI shielding application

, &
Received 15 Aug 2023, Accepted 17 May 2024, Published online: 24 May 2024

References

  • Tonouchi M. Cutting-edge terahertz technology. Nat Photon. 2007;1(2):97–105. doi: 10.1038/nphoton.2007.3
  • Hillger P, Grzyb J, Jain R, et al. Terahertz imaging and sensing applications with silicon-based technologies. IEEE Trans THz Sci Technol. 2019;9(1):1–19. doi: 10.1109/TTHZ.2018.2884852
  • Wang W, Huang L, Zhou H, et al. Low frequency terahertz induced thermoacoustic signal characteristics and its application in solid-state terahertz transmitter power detection. Ieee Trans THz Sci Technol. 2022;12(6):673–677. doi: 10.1109/TTHZ.2022.3204854
  • Cooke CM, Leong K, Zamora A, et al. A 670 GHz integrated InP HEMT direct-detection receiver for the tropospheric water and cloud ice instrument. IEEE Trans THz Sci Technol. 2021;11(5):566–576. doi: 10.1109/TTHZ.2021.3083939
  • Majidzadeh M. 2.4/5.8 GHz WLAN filtering in secure electromagnetic applications: a single layer frequency selective surface. Smart Sci. 2017;5(4):199–205. doi: 10.1080/23080477.2017.1365405
  • Lu Y, Wang XK, Sun WF, et al. Reflective single-pixel terahertz imaging based on compressed sensing. IEEE Trans Terahertz Sci Technol. 2020;10(5):495–501. doi: 10.1109/TTHZ.2020.2982350
  • Mao T, Chen J, Wang Q, et al. Waveform design for joint sensing and communications in millimeter-wave and low terahertz bands. IEEE Trans Commun. 2022;70(10):7023–7039. doi: 10.1109/TCOMM.2022.3196685
  • Bilotti F, Tricarico S, Vegni L. Plasmonic metamaterial cloaking at optical frequencies. IEEE Trans Nanotechnol. 2010;9(1):55–61. doi: 10.1109/TNANO.2009.2025945
  • Liu W, Zhao C, Li K, et al. Two-section folded-waveguide slow-wave structure for terahertz extended interaction oscillator. IEEE Trans Electron Devices. 2014;61(3):902–908. doi: 10.1109/TED.2013.2297343
  • Udhayasuriyan S, Subramaniyan S, Johnson W. A compact metamaterial-based open-ended CPW band-pass filter for wireless applications. Arab J Sci Eng. 2022;47(3):3473–3480. doi: 10.1007/s13369-021-06339-3
  • Mao Q, Liu J, Zhu Y, et al. Developing industry-level terahertz imaging resolution using mathematical model. IEEE Trans Terahertz Sci Technol. 2021;11(5):583–590. doi: 10.1109/TTHZ.2021.3086688
  • Hou L, Chai C, Wang Z, et al. Terahertz radiation detection using glow discharge detectors by electrical and optical modes. IEEE Trans Electron Devices. 2021;68(10):5179–5183. doi: 10.1109/TED.2021.3108119
  • Kalraiya S, Chaudhary RK, Abdalla MA. Design and analysis of polarization independent conformal wideband metamaterial absorber using resistor loaded sector shaped resonators. J Appl Phys. 2019;125(13). doi: 10.1063/1.5085253
  • Ebrahimi A, Ako RT, Lee WSL, et al. High-$Q$ terahertz absorber with stable angular response. IEEE Trans THz Sci Technol. 2020;10(2):204–211. doi: 10.1109/TTHZ.2020.2964812
  • Munk BA, Munk P, Pryor J. On designing jaumann and circuit analog absorbers (CA Absorbers) for oblique angle of incidence. IEEE Trans Antennas Propag. 2007;55(1):186–193. doi: 10.1109/TAP.2006.888395
  • Liang JC, Cheng Q, Gao Y, et al. An angle-insensitive 3-bit reconfigurable intelligent surface. IEEE Trans Antennas Propag. 2022;70(10):8798–8808. doi: 10.1109/TAP.2021.3130108
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):207402. doi: 10.1103/PhysRevLett.100.207402
  • Ghosh S, Srivastava KV. Polarization-insensitive single-/Dual-band tunable absorber with independent tuning in wide frequency range. IEEE Trans Antennas Propag. 2017;65(9):4903–4908. doi: 10.1109/TAP.2017.2731381
  • Upender P, Kumar A. Ultrathin, ultra narrow band DMMA for biosensing applications. IEEE Trans Nanobioscience. 2023;22(3):529–537. doi: 10.1109/TNB.2022.3217077
  • Rani N, Bohre AK, Bhattacharya A. A conformal ultrathin and ultra-wideband metamaterial-based absorber dedicated for applications in C and X bands. SN Comput Sci. 2023;4(5):490. doi: 10.1007/s42979-023-02005-7
  • Yadav R, Panwar R. Multilayer gradient perforated radar absorbing structure for stealth applications. IEEE Trans Magn. 2022;58(2):1–5. doi: 10.1109/TMAG.2021.3103133
  • Wu B, Yang Y-J, Li H-L, et al. Low-loss dual-polarized frequency-selective rasorber with graphene-based planar resistor. IEEE Trans Antennas Propag. 2020;68(11):7439–7446. doi: 10.1109/TAP.2020.2998173
  • Chen A, Song Z. Tunable isotropic absorber with phase change material VO 2. IEEE Trans Nanotechnol. 2020;19:197–200. doi: 10.1109/TNANO.2020.2974801
  • Zhang M, Zhang J, Chen A, et al. Vanadium dioxide-based bifunctional metamaterial for terahertz waves. IEEE Photonics J. 2020;12(1):1–9. doi: 10.1109/JPHOT.2020.3037623
  • Song Z, Wang K, Li J, et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. Opt Express. 2018;26(6):7148. doi: 10.1364/OE.26.007148
  • Song Z, Wei M, Wang Z, et al. Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces. IEEE Photonics J. 2019;11(2):1–7. doi: 10.1109/JPHOT.2019.2898981
  • Barzegar-Parizi S, Vafapour Z. A switchable polarization-independent broadband GST-based metasurface infrared absorber in modulating applications. Appl Phys A. 2023;129(11):790. doi: 10.1007/s00339-023-07078-y
  • Barzegar-Parizi S, Ebrahimi A, Ghorbani K. Terahertz wideband modulator devices using phase change material switchable frequency selective surfaces. Phys Scr. 2023;98(6):065531. doi: 10.1088/1402-4896/acd6c7/meta
  • Wu G, Jiao X, Wang Y, et al. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide. Opt Express. 2021;29(2):2703–2711. doi: 10.1364/OE.416227
  • Kumar A, Chowdhuri A, Tomar M, et al. Boost in the electromagnetic shielding effectiveness of polystyrene–polyaniline composites by addition of carbon nanofibers. Arab J Sci Eng. 2023;48(1):1009–1019. doi: 10.1007/s13369-022-07289-0
  • Zhang Y, Dong H, Mou N, et al. High-performance broadband electromagnetic interference shielding optical window based on a metamaterial absorber. Opt Express. 2020;28(18):26836. doi: 10.1364/OE.401766
  • Ren Y, Tang B. Switchable multi-functional VO 2 -integrated metamaterial devices in the terahertz region. J Lightwave Technol. 2021;39(18):5864–5868. doi: 10.1109/JLT.2021.3092952
  • Wang S, Kang L, Werner DH. Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2). Sci Rep. 2017;7(1):4326. doi: 10.1038/s41598-017-04692-8
  • Chu Q, Song Z, Liu QH. Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces. Appl Phys Express. 2018;11(8):082203. doi: 10.7567/APEX.11.082203
  • Smith DR, Vier DC, Koschny T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E. 2005;71(3):036617. doi: 10.1103/PhysRevE.71.036617
  • Liu H, Wang Z-H, Li L, et al. Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber. Sci Rep. 2019;9(1):5751. doi: 10.1038/s41598-019-42293-9
  • Li X, Tang S, Ding F, et al. Switchable multifunctional terahertz metasurfaces employing vanadium dioxide. Sci Rep. 2019;9(1):5454. doi: 10.1038/s41598-019-41915-6
  • Shabanpour J, Beyraghi S, Oraizi H. Reconfigurable honeycomb metamaterial absorber having incident angular stability. Sci Rep. 2020;10(1):14920. doi: 10.1038/s41598-020-72105-4
  • Mou N, Tang B, Li J, et al. Switchable ultra-broadband terahertz wave absorption with VO2-based metasurface. Sci Rep. 2022;12(1):2501. doi: 10.1038/s41598-022-04772-4
  • Yadav VS, Kaushik BK, Patnaik A. Broadband THz absorber for large inclination angle TE and TM waves. IEEE Photonics J. 2021;13(5):1–7. doi: 10.1109/JPHOT.2021.3112550
  • Fallah Madvari R, Hosseinabadi S, Bidel H, et al. Total shielding efficiency, reflection loss and absorption loss of nanoparticles/paraffin wax absorber in the shielding of electromagnetic pollution. Trans Electr Electron Mater. 2022;23(6):666–673. doi: 10.1007/s42341-022-00406-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.