51
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring evolutionary-tuned autoencoder-based architectures for fault diagnosis in a wind turbine gearbox

ORCID Icon, , &
Received 15 Jan 2024, Accepted 02 Jun 2024, Published online: 11 Jun 2024

References

  • Gbashi SM, Adedeji PA. Hyperparameter optimization on CNN using hyperband for fault identification in wind turbine high-speed shaft gearbox bearing. 2023 November;16–17.
  • Alotaibi M, Honarvar Shakibaei Asli B, Khan M. Non-invasive inspections: a review on methods and tools. Sensors. 2021;21(24):8474. doi:10.3390/s21248474
  • Ogaili AAF, Hamzah MN, Jaber AA. Enhanced fault detection of wind turbine using extreme gradient boosting technique based on nonstationary vibration analysis. J Fail Anal And Preven. 2024;24(2):877–895. doi: 10.1007/s11668-024-01894-x
  • Ogaili AA, Hamzah MN, Jaber AA, et al. Application of discrete wavelet transform for condition monitoring and fault detection in wind turbine blades: an experimental study. Eng Techol J. 2024;42(1):104–116. doi: 10.30684/etj.2023.142023.1516
  • Li X, Wang Y, Yao J, et al. Multi-sensor fusion fault diagnosis method of wind turbine bearing based on adaptive convergent viewable neural networks. Reliab Eng Syst Saf. 2024;245:109980. doi: 10.1016/j.ress.2024.109980
  • Narasinh V, Mital P, Chakravortty N, et al. Investigating power loss in a wind turbine using real-time vibration signature. Eng Fail Anal. 2024;159:108010. doi: 10.1016/j.engfailanal.2024.108010
  • Brethee KF, Ibrahim GR, Albarbar A-H, et al. Vibro-acoustic analysis for remotely condition monitoring approach of wind turbine. AIP Conf Proc. 2024;3009(1):030036.
  • Jaber AA. Diagnosis of bearing faults using temporal vibration signals: a comparative study of machine learning models with feature selection techniques. J Fail Anal And Preven. 2024;24(2):752–768. doi: 10.1007/s11668-024-01883-0
  • Wang J, Fu P, Zhang L, et al. Multilevel information fusion for induction motor fault diagnosis. IEEE/ASME Trans Mechatron. 2019;24(5):2139–2150. doi:10.1109/TMECH.2019.2928967
  • Alharbi F, Luo S, Zhang H, et al. A brief review of acoustic and vibration signal-based fault detection for belt conveyor idlers using machine learning models. Sensors. 2023;23(4):1902. doi: 10.3390/s23041902
  • Daiki G, Tsuyoshi I, Takekiyo H, et al. Failure diagnosis and physical interpretation of journal bearing for slurry liquid using long-term real vibration data. Struct Heal Monit. 2024;23(2):1201–1216. doi: 10.1177/14759217231184579
  • Tang H, Tang Y, Su Y, et al. Feature extraction of multi-sensors for early bearing fault diagnosis using deep learning based on minimum unscented Kalman filter. Eng Appl Artif Intell. 2024;127:107138. doi: 10.1016/j.engappai.2023.107138
  • Nayana BR, Geethanjali P. Analysis of statistical time-domain features effectiveness in identification of bearing faults from vibration signal. IEEE Sens J. 2017;17(17):5618–5625. doi:10.1109/JSEN.2017.2727638
  • Pang B, Liu Q, Sun Z, et al. Time-frequency supervised contrastive learning via pseudo-labeling: an unsupervised domain adaptation network for rolling bearing fault diagnosis under time-varying speeds. Adv Eng Informatics. 2024;59:102304. doi: 10.1016/j.aei.2023.102304
  • Li H, Wang D. Multilevel feature fusion of multi-domain vibration signals for bearing fault diagnosis. Signal Image Video Process. 2024;18(1):99–108. doi: 10.1007/s11760-023-02715-8
  • Buchaiah S, Shakya P. Bearing fault diagnosis and prognosis using data fusion based feature extraction and feature selection. Measurement. 2022;188:110506. doi:10.1016/j.measurement.2021.110506
  • Song Y, Cao J, Hu Y. In-process feature extraction of milling chatter based on second-order synchroextracting transform and fast kutrogram. Mech Syst Signal Process. 2024;208:111018. doi:10.1016/j.ymssp.2023.111018
  • Li H, Zhang J, Zhang Z, et al. Priori-distribution-guided adaptive sparse attention for cross-domain feature mining in diesel engine fault diagnosis. Eng Appl Artif Intell. 2024;132:107975. doi: 10.1016/j.engappai.2024.107975
  • Elias S. Vibration improvement of offshore wind turbines under multiple hazards. Structures. 2024;59:105800. doi: 10.1016/j.istruc.2023.105800
  • Javorskyj I, Yuzefovych R, Lychak O, et al. Hilbert transform for covariance analysis of periodically nonstationary random signals with high-frequency modulation. ISA Trans. 2024;144:452–481. doi:10.1016/j.isatra.2023.10.025
  • Gbashi SM, Olatunji OO, Adedeji PA, et al. A hybrid empirical mode decomposition (EMD)-support vector machine (SVM) for multi-fault recognition in a wind turbine gearbox. 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET); 2023. p. 1–7. doi: 10.1109/ICECET58911.2023.10389608
  • Akan A, Cura OK. Time–frequency signal processing: today and future. Digit Signal Process. 2021;119:103216. doi: 10.1016/j.dsp.2021.103216
  • Vashishtha G, Kumar R. Pelton wheel bucket fault diagnosis using improved Shannon entropy and expectation maximization principal component analysis. J Vib Eng Technol. 2022;10(1):335–349. doi: 10.1007/s42417-021-00379-7
  • Chauhan S, Vashishtha G, Kumar R, et al. An adaptive feature mode decomposition based on a novel health indicator for bearing fault diagnosis. Measurement. 2024;226:114191. doi: 10.1016/j.measurement.2024.114191
  • Vashishtha G, Chauhan S, Singh M, et al. Bearing defect identification by swarm decomposition considering permutation entropy measure and opposition-based slime mould algorithm. Measurement. 2021;178:109389. doi:10.1016/j.measurement.2021.109389
  • Vashishtha G, Chauhan S, Yadav N, et al. A two-level adaptive chirp mode decomposition and tangent entropy in estimation of single-valued neutrosophic cross-entropy for detecting impeller defects in centrifugal pump. Appl Acoust. 2022;197:108905. doi:10.1016/j.apacoust.2022.108905
  • Tang Z, Wang M, Ouyang T, et al. A wind turbine bearing fault diagnosis method based on fused depth features in time–frequency domain. Energy Rep. 2022;8:12727–12739. doi:10.1016/j.egyr.2022.09.113
  • Wang T, Han Q, Chu F, et al. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review. Mech Syst Signal Process. 2019;126:662–685. doi:10.1016/j.ymssp.2019.02.051
  • Hasan MJ, Sohaib M, Kim J-M. An explainable ai-based fault diagnosis model for bearings. Sensors. 2021;21(12):4070. doi:10.3390/s21124070
  • Jović A, Brkić K, Bogunović N. A review of feature selection methods with applications. 2015 38th Int Convention On Inf And Commun Technol, Electron And Microelectronics (MIPRO). 2015;1(1): 1200–1205.
  • Žvokelj M, Zupan S, Prebil I. Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method. Mech Syst Signal Process. 2011;25(7):2631–2653. doi:10.1016/j.ymssp.2011.03.002
  • Mordohai P, Medioni G,” S. Z. Li and A. Jain, editors. Manifold learning BT – Encyclopedia of Biometrics. Boston (MA): Springer US; 2009. p. 954–958. doi: 10.1007/978-0-387-73003-5_301
  • Duque AF, Morin S, Wolf G, et al. Extendable and invertible manifold learning with geometry regularized autoencoders. 2020 IEEE International Conference on Big Data (Big Data); Atlanta, GA, USA. 2020. p. 5027–5036.
  • Jordan J. Introduction to autoencoders. Datascience. 2018. Available from: https://www.jeremyjordan.me/autoencoders/
  • González-Muñiz A, Díaz I, Cuadrado AA, et al. Two-step residual-error based approach for anomaly detection in engineering systems using variational autoencoders. Comput Electr Eng. 2022;101:108065. doi:10.1016/j.compeleceng.2022.108065
  • Nam K, Wang F. An extreme rainfall-induced landslide susceptibility assessment using autoencoder combined with random forest in Shimane Prefecture, Japan. Geoenvironmental Disasters. 2020;7(1):1–16. doi: 10.1186/s40677-020-0143-7
  • Zhang C, Hu D, Yang T. Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost. Reliab Eng Syst Saf. 2022;222:108445. doi:10.1016/j.ress.2022.108445
  • Chopra P, Yadav SK. Fault detection and classification by unsupervised feature extraction and dimensionality reduction. Complex Intell Syst. 2015;1(1–4):25–33. doi: 10.1007/s40747-015-0004-2
  • Mishra KM, Krogerus TR, Huhtala KJ. Fault detection of elevator systems using deep autoencoder feature extraction. 2019 13th International Conference on Research Challenges in Information Science (RCIS); Brussels, Belgium. 2019. p. 1–6.
  • Venkatesh B, Anuradha J. A review of feature selection and its methods. Cybern Inf Technol. 2019;19(1):3–26. doi: 10.2478/cait-2019-0001
  • Wu H, Chen J, Liu X, et al. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS. J Light Technol. 2019;37(17):4359–4366. doi: 10.1109/JLT.2019.2923839
  • Sahu B, Dash S. Optimal feature selection from high-dimensional microarray dataset employing hybrid IG-Jaya model. Curr Mater Sci Former Recent Patents Mater Sci. 2024;17(1):21–43. doi: 10.2174/2666145416666230124143912
  • Fan Y, Liu J, Tang J, et al. Learning correlation information for multi-label feature selection. Pattern Recognit. 2024;145:109899. doi: 10.1016/j.patcog.2023.109899
  • Mostafa RR, Khedr AM, Al Aghbari Z, et al. An adaptive hybrid mutated differential evolution feature selection method for low and high-dimensional medical datasets. Knowledge-Based Syst. 2024;283:111218. doi: 10.1016/j.knosys.2023.111218
  • Rao S, Zou G, Yang S, et al. A feature selection and ensemble learning based methodology for transformer fault diagnosis. Appl Soft Comput. 2024;150:111072. doi:10.1016/j.asoc.2023.111072
  • Dai J, Huang W, Zhang C, et al. Multi-label feature selection by strongly relevant label gain and label mutual aid. Pattern Recognit. 2024;145:109945. doi: 10.1016/j.patcog.2023.109945
  • Wang Y, Ran S, Wang G-G. Role-oriented binary grey wolf optimizer using foraging-following and lévy flight for feature selection. Appl Math Model. 2024;126:310–326. doi:10.1016/j.apm.2023.08.043
  • Sarita K, Devarapalli R, Kumar S, et al. Principal component analysis technique for early fault detection. J Intell Fuzzy Syst. 2022;42(2):861–872. doi:10.3233/JIFS-189755
  • Pozo F, and Vidal Y. Damage and Fault Detection of Structures Using Principal Component Analysis and Hypothesis Testing. In: Naik GR, editor. Advances in Principal Component Analysis. Singapore: Springer; 2018. p. 137–191. doi: 10.1007/978-981-10-6704-4_7
  • Wang Z, Zhang G, Xing X, et al. Comparison of dimensionality reduction techniques for multi-variable spatiotemporal flow fields. Ocean Eng. 2024;291:116421. doi: 10.1016/j.oceaneng.2023.116421
  • Liu L, Liu J, Wang H, et al. A multivariate monitoring method based on kernel principal component analysis and dual control chart. J Process Control. 2023;127:102994. doi: 10.1016/j.jprocont.2023.102994
  • Yang Z, Xu B, Luo W, et al. Autoencoder-based representation learning and its application in intelligent fault diagnosis: a review. Measurement. 2022;189:110460. doi:10.1016/j.measurement.2021.110460
  • Sarkodie K, Fergusson-Rees A, Abdulkadir M, et al. Gas-liquid flow regime identification via a non-intrusive optical sensor combined with polynomial regression and linear discriminant analysis. Ann Nucl Energy. 2023;180:109424. doi:10.1016/j.anucene.2022.109424
  • Zhang R, Xu P, Guo L, et al. Z-score linear discriminant analysis for EEG based brain-computer interfaces. PLoS One. 2013;8(9):e74433. doi:10.1371/journal.pone.0074433
  • Singh G, Pal Y, Dahiya AK. Classification of power quality disturbances using linear discriminant analysis. Appl Soft Comput. 2023;138:110181. doi: 10.1016/j.asoc.2023.110181
  • Lipshutz D, Kashalikar A, Farashahi S, et al. A linear discriminant analysis model of imbalanced associative learning in the mushroom body compartment. PLoS Comput Biol. 2023;19(2):e1010864. doi:10.1371/journal.pcbi.1010864
  • Dragović S. Artificial neural network modeling in environmental radioactivity studies – A review. Sci Total Environ. 2022;847:157526. doi: 10.1016/j.scitotenv.2022.157526
  • Juan NP, Valdecantos VN. Review of the application of artificial neural networks in ocean engineering. Ocean Eng. 2022;259:111947. doi:10.1016/j.oceaneng.2022.111947
  • Al Barsh YI, Duhair MK, Ismail HJ, et al. MPG prediction using artificial neural network. Int J Acad Inf Syst Res. 2020;4(11):7–16.
  • Oliveira TP, Barbar JS, Soares AS. Computer network traffic prediction: a comparison between traditional and deep learning neural networks. Int J Big Data Intell. 2016;3(1):28–37. doi: 10.1504/IJBDI.2016.073903
  • Ibrahim MH, Jihad KH, Kamal LL. Determining optimum structure for artificial neural network and comparison between back-propagation and Levenberg-Marquardt training algorithms. Int J Eng Sci. 2017;14887:14887–14890.
  • Sun Z, Wang G, Li P, et al. An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Syst Appl. 2024;237:121549. doi:10.1016/j.eswa.2023.121549
  • Irsoy O, Alpaydın E. Distributed decision trees. Proceedings, Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshops, S+ SSPR 2022; Montreal, QC, Canada; 2023. p. 152–162. [2022 Aug 26–27].
  • Zheng J, Liu Y, Ge Z. Dynamic ensemble selection based improved random forests for fault classification in industrial processes. IFAC J Syst Control. 2022;20:100189. doi: 10.1016/j.ifacsc.2022.100189
  • Hu Q, Si X-S, Zhang Q-H, et al. A rotating machinery fault diagnosis method based on multi-scale dimensionless indicators and random forests. Mech Syst Signal Process. 2020;139:106609. doi:10.1016/j.ymssp.2019.106609
  • Chauhan S, Vashishtha G. A synergy of an evolutionary algorithm with slime mould algorithm through series and parallel construction for improving global optimization and conventional design problem. Eng Appl Artif Intell. 2023;118:105650. doi:10.1016/j.engappai.2022.105650
  • Adedeji PA, Olatunji OO, Madushele N, et al. Evolutionary-based hyperparameter tuning in machine learning models for condition monitoring in wind turbines–a survey. 2021 IEEE 12th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT); Cape Town, South Africa. 2021. p. 254–258.
  • Olatunji OO, Adedeji PA, Madushele N, et al. Evolutionary optimization of biogas production from food, fruit, and vegetable (FFV) waste. Biomass Convers Biorefinery. 2023:1–13. doi: 10.1007/s13399-023-04506-0
  • Hollweg GV, de Oliveira Evald PJD, Mattos E, et al. Self-tuning methodology for adaptive controllers based on genetic algorithms applied for grid-tied power converters. Control Eng Pract. 2023;135:105500. doi: 10.1016/j.conengprac.2023.105500
  • Adeleke O, Akinlabi S, Jen T-C, et al. Evolutionary-based neuro-fuzzy modelling of combustion enthalpy of municipal solid waste. Neural Comput Appl. 2022;34(10):7419–7436. doi:10.1007/s00521-021-06870-2
  • Katoch S, Chauhan SS, Kumar V. A review on genetic algorithm: past, present, and future. Multimed Tools Appl. 2021;80(5):8091–8126. doi: 10.1007/s11042-020-10139-6
  • Pedregosa F,Varoquaux, G., Gramfort, A et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–2830.
  • Shao G, Tang L, Zhang H. Introducing image classification efficacies. IEEE Access. 2021;9:134809–134816. doi:10.1109/ACCESS.2021.3116526
  • Trunz E, Weinmann M, Merzbach S, et al. Efficient structuring of the latent space for controllable data reconstruction and compression. Graph Vis Comput. 2022;7:200059. doi: 10.1016/j.gvc.2022.200059
  • Ide H, Kurita T. Improvement of learning for CNN with ReLU activation by sparse regularization. 2017 international joint conference on neural networks (IJCNN); Anchorage, AK, USA. 2017. p. 2684–2691.
  • Guan S, Loew M. Analysis of generalizability of deep neural networks based on the complexity of decision boundary. 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA); Miami, FL, USA. 2020. p. 101–106.
  • Okumus H, Nuroglu FM. A random forest-based approach for fault location detection in distribution systems. Electr Eng. 2021;103(1):257–264. doi: 10.1007/s00202-020-01074-8
  • Sun Y, Zhang H, Zhao T, et al. A new convolutional neural network with random forest method for hydrogen sensor fault diagnosis. IEEE Access. 2020;8:85421–85430. doi:10.1109/ACCESS.2020.2992231
  • Tang X, Gu X, Rao L, et al. A single fault detection method of gearbox based on random forest hybrid classifier and improved Dempster-Shafer information fusion. Comput Electr Eng. 2021;92:107101. doi: 10.1016/j.compeleceng.2021.107101
  • Sagi O, Rokach L. Ensemble learning: a survey. Wiley Interdiscip Rev Data Min Knowl Discov. 2018;8(4):e1249. doi: 10.1002/widm.1249
  • Xu G, Liu M, Jiang Z, et al. Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning. Sensors. 2019;19(5):1088. doi:10.3390/s19051088
  • Inturi V, Sabareesh GR, Sharma V. Integrated vibro-acoustic analysis and empirical mode decomposition for fault diagnosis of gears in a wind turbine. Procedia Struct Integr. 2019;14(2018):937–944. doi: 10.1016/j.prostr.2019.07.074
  • Kordestani M, Rezamand M, Orchard M, et al. Planetary gear faults detection in wind turbine gearbox based on a ten years historical data from three wind farms. IFAC-Papersonline. 2020;53(2):10318–10323. doi: 10.1016/j.ifacol.2020.12.2767
  • Biswal S, George JD, Sabareesh GR. Fault size estimation using vibration signatures in a wind turbine test-rig. Procedia Eng. 2016;144:305–311. doi:10.1016/j.proeng.2016.05.137
  • Joshuva A, Sugumaran V. A lazy learning approach for condition monitoring of wind turbine blade using vibration signals and histogram features. Measurement. 2020;152:107295. doi:10.1016/j.measurement.2019.107295
  • Pang Y, Jia L, Zhang X, et al. Design and implementation of automatic fault diagnosis system for wind turbine. Comput Electr Eng. 2020;87:106754. doi: 10.1016/j.compeleceng.2020.106754
  • Gbashi SM, Madushele N, Olatunji OO, et al. Wind turbine main bearing: a mini review of its failure modes and condition monitoring techniques. 2022 IEEE 13th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT); 25-27 May 2022; Cape Town, South Africa. 2022. doi: 10.1109/ICMIMT55556.2022.9845317