0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive review on stochastic modeling of electric vehicle charging load demand regarding various uncertainties

, &
Received 06 Apr 2023, Accepted 13 Jul 2024, Published online: 23 Jul 2024

References

  • Razipour R, Moghaddas-Tafreshi S-M, Farhadi P. Optimal management of electric vehicles in an intelligent parking lot in the presence of hydrogen storage system. J Energy Storage. 2019;22:144–152. doi: 10.1016/j.est.2019.02.001
  • Sachan S, Deb S, Singh SN, et al. Planning and operation of EV charging stations by chicken swarm optimization driven heuristics. Energy Convers Econ. 2021;2(2):91–99. doi: 10.1049/enc2.12030
  • Sachan S, Deb S, Singh SN. Different charging infrastructures along with smart charging strategies for electric vehicles. Sustain Cities Soc. 2020;60:102238. doi: 10.1016/j.scs.2020.102238
  • Farhadi P, Moghaddas Tafreshi SM. Charging stations for electric vehicles; a comprehensive review on planning, operation, configurations, codes and standards, challenges and future research directions. Smart Sci. 2022;10(3):213–245. doi: 10.1080/23080477.2021.2003947
  • Sachan SKishor N. Charging of electric vehicles under contingent conditions in smart distribution grids. 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES); 14-17 December 2016; Trivandrum, India. IEEE; 2016. p. 1–5. doi:10.1109/PEDES.2016.7914235
  • Chorasiya G, Kumar V, Suhag S. GWO-and SSA-Tuned PID control for frequency regulation in multi-area power network integrated with plug-in electric vehicle. Smart Sci. 2024;12(1):74–90. doi: 10.1080/23080477.2023.2270668
  • Singh PP, Das S, Wen F, et al. Multi-objective planning of electric vehicles charging in distribution system considering priority-based vehicle-to-grid scheduling. Swarm Evol Computation. 2023;77:101234. doi: 10.1016/j.swevo.2023.101234
  • Goh HH, Zong L, Zhang D, et al. Mid- and long-term strategy based on electric vehicle charging unpredictability and ownership estimation. Int J Electr Power Energy Syst. 2022;142:108240. doi: 10.1016/j.ijepes.2022.108240
  • World Health Organization, WHO. Health and Climate Change Survey Report. [accessed2021 November 8]. https://www.who.int/publications/i/item/9789240038509
  • UNEP. Emissions gap report 2023. In: Book emissions gap report 2023. 2023.
  • Zheng Y, Shao Z, Zhang Y, et al. A systematic methodology for mid-and-long term electric vehicle charging load forecasting: the case study of Shenzhen, China. Sustain Cities Soc. 2020;56:102084. doi: 10.1016/j.scs.2020.102084
  • IEA. Global EV outlook 2024. Paris, France: IEA; 2024 [accessed2024 April] https://www.iea.org/reports/global-ev-outlook-2024.
  • Vertgewall CM, Trageser M, Kurth M, et al. Modeling probabilistic driving and charging profiles of commercial electric vehicles. Electric Power Syst Res. 2022;212:108538. doi: 10.1016/j.epsr.2022.108538
  • Aboshady FM, Pisica I, Axon CJ. Stochastic Modeling of Vehicle Arrival for the UK’s First Electric Vehicle Charging Forecourt. 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT); 16-18 February 2021; Washington, DC, USA. IEEE; 2021. p. 1–5. doi:10.1109/ISGT49243.2021.9372258
  • Aboshady FM, Pisica I, Axon CJ. A stochastic model for estimating electric vehicle arrival at multi-charger forecourts. Energy Rep. 2022;8:11569–11578. doi: 10.1016/j.egyr.2022.09.007
  • Ahmadian A, Mohammadi-Ivatloo B, Elkamel A. A review on plug-in electric vehicles: introduction, current status, and load modeling techniques. J Mod Power Syst Clean Energy. 2020;8(3):412–425. doi: 10.35833/MPCE.2018.000802
  • Deb S, Pihlatie M, Al-Saadi M. Smart charging: a comprehensive review. IEEE Access. 2022;10:134690–134703. doi: 10.1109/ACCESS.2022.3227630
  • Jenkins M, Kockar I. Electric vehicle aggregation model: a probabilistic approach in representing flexibility. Electric Power Syst Res. 2022;213:108484. doi: 10.1016/j.epsr.2022.108484
  • Sachan S, Adnan N. Stochastic charging of electric vehicles in smart power distribution grids. Sustain Cities Soc. 2018;40:91–100. doi: 10.1016/j.scs.2018.03.031
  • Ahmad P, Choudhary NK, Singh N, et al. Primary frequency control by fuzzy-based participation controller for plug-in electric vehicles. Smart Sci. 2023;11(3):447–459. doi: 10.1080/23080477.2023.2191498
  • Einolander J, Lahdelma R. Multivariate copula procedure for electric vehicle charging event simulation. Energy. 2022;238:121718. doi: 10.1016/j.energy.2021.121718
  • Chen Z, Zhang Z, Zhao J, et al. An analysis of the charging characteristics of electric vehicles based on measured data and its application. IEEE Access. 2018;6:24475–24487. doi: 10.1109/ACCESS.2018.2835825
  • Sokorai P, Fleischhacker A, Lettner G, et al. Stochastic modeling of the charging behavior of electromobility. World Electric Vehicle J. 2018;9(3):44. doi: 10.3390/wevj9030044
  • Zhang J, Yan J, Liu Y, et al. Daily electric vehicle charging load profiles considering demographics of vehicle users. Appl Energy. 2020;274:115063. doi: 10.1016/j.apenergy.2020.115063
  • Weiß A, Biedenbach F, Müller M. Probabilistic load profile Model for public charging infrastructure to evaluate the grid load. Energies. 2022;15(13):4748. doi: 10.3390/en15134748
  • Fischer D, Harbrecht A, Surmann A, et al. Electric vehicles’ impacts on residential electric local profiles – a stochastic modelling approach considering socio-economic, behavioural and spatial factors. Appl Energy. 2019;233-234:644–658. doi: 10.1016/j.apenergy.2018.10.010
  • IEA global EV outlook 2023. Paris, France. [accessed April 2023]. https://www.iea.org/reports/global-ev-outlook-2023
  • Amara-Ouali Y, Goude Y, Massart P, et al. A review of electric vehicle load open data and models. Energies. 2021;14(8):2233. doi: 10.3390/en14082233
  • Flammini MG, Prettico G, Julea A, et al. Statistical characterisation of the real transaction data gathered from electric vehicle charging stations. Electric Power Syst Res. 2019;166:136–150. doi: 10.1016/j.epsr.2018.09.022
  • Payam Farhadi SMMT, Shahirinia A. Multivariate dependence modeling of electric vehicle charging stochastic parameters. In: Proceedings of 2022 12th Smart Grid Conference (SGC 2022); Kerman City Iran. p. 2022.
  • Iqbal MN, Kütt L, Lehtonen M, et al. Travel activity based stochastic modelling of load and charging state of electric vehicles. Sustainability. 2021;13(3):1550. doi: 10.3390/su13031550
  • Hu Q, Li H, Bu S. The prediction of electric vehicles load profiles considering stochastic charging and discharging behavior and their impact assessment on a real UK distribution network. Energy Procedia. 2019;158:6458–6465. doi: 10.1016/j.egypro.2019.01.134
  • Somakumar R, Kasinathan P, Monicka G, et al. Optimization of emission cost and economic analysis for microgrid by considering a metaheuristic algorithm‐assisted dispatch model. Int J Numer Modell: Electron Networks, Devices And Fields. 2022;35(4):e2993. doi: 10.1002/jnm.2993
  • Mitrakoudis SG, Alexiadis MC. Modelling electric vehicle charge demand: implementation for the Greek power system. World Electric Vehicle J. 2022;13(7):115. doi: 10.3390/wevj13070115
  • Li X, Wang Z, Zhang L, et al. Electric vehicle behavior modeling and applications in vehicle-grid integration: an overview. Energy. 2023;268:126647. doi: 10.1016/j.energy.2023.126647
  • Märtz A, Langenmayr U, Ried S, et al. Charging behavior of electric vehicles: temporal clustering based on real-world data. Energies. 2022;15(18):6575. doi: 10.3390/en15186575
  • Almutairi A, Alyami S. Load profile modeling of plug-in electric vehicles: realistic and ready-to-use benchmark test data. IEEE Access. 2021;9:59637–59648. doi: 10.1109/ACCESS.2021.3072982
  • Su J, Lie TT, Zamora R. Modelling of large-scale electric vehicles charging demand: a New Zealand case study. Electric Power Syst Res. 2019;167:171–182. doi: 10.1016/j.epsr.2018.10.030
  • Jin Y, Acquah MA, Seo M. Optimal siting and sizing of EV charging station using stochastic power flow analysis for voltage stability. IEEE Transactions on Transportation Electrification. 2023;10(1): 777–794. doi:10.1109/TTE.2023.3275080.
  • Thomas P, Shanmugam PK. A review on mathematical models of electric vehicle for energy management and grid integration studies. J Energy Storage. 2022;55:105468. doi: 10.1016/j.est.2022.105468
  • Mishra S, Verma S, Chowdhury S, et al. A comprehensive review on developments in electric vehicle charging station infrastructure and present scenario of India. Sustainability. 2021;13(4):2396. doi: 10.3390/su13042396
  • Shahbazi A, Moradi CheshmehBeigi H, Abdi H, et al. Probabilistic optimal allocation of electric vehicle charging stations considering the uncertain loads by using the Monte Carlo simulation method. J Operation Automation Power Eng. 2022. doi:10.22098/joape.2023.10427.1738
  • Xing Y, Li F, Sun K, et al. Multi-type electric vehicle load prediction based on Monte Carlo simulation. Energy Rep. 2022;8:966–972. doi: 10.1016/j.egyr.2022.05.264
  • Aghapour R, Sepasian MS, Arasteh H, et al. Probabilistic planning of electric vehicles charging stations in an integrated electricity-transport system. Electric Power Syst Res. 2020;189:106698. doi: 10.1016/j.epsr.2020.106698
  • Einolander J, Lahdelma R. Multivariate copula procedure for electric vehicle charging event simulation. Energy. 2021;238:121718. doi: 10.1016/j.energy.2021.121718
  • Ivarsøy E, Torsæter BN, Korpås M. Stochastic Load Modeling of High-Power Electric Vehicle Charging - A Norwegian Case Study.0 International Conference on Smart Energy Systems and Technologies (SEST)07-09 September 2020; Istanbul, Turkey; 2020. p. 1–6. doi:10.1109/SEST48500.2020.9203102
  • Ul-Haq A, Cecati C, El-Saadany E. Probabilistic modeling of electric vehicle charging pattern in a residential distribution network. Electric Power Syst Res. 2018;157:126–133. doi: 10.1016/j.epsr.2017.12.005
  • Pouladi J, Abedinzadeh T. Probabilistic multi-objective optimal scheduling of plug-in hybrid electric vehicles in the distribution system. J Renewable Sustain Energy. 2018;10(2):025701. doi: 10.1063/1.5018492
  • Shukla A, Verma K, Kumar R. Voltage‐dependent modelling of fast charging electric vehicle load considering battery characteristics. IET Electr Syst Transp. 2018;8(4):221–230. doi: 10.1049/iet-est.2017.0096
  • Arias A, Granada M, Castro CA. Optimal probabilistic charging of electric vehicles in distribution systems. IET Electr Syst Transp. 2017;7(3):246–251. doi: 10.1049/iet-est.2016.0072
  • Yan Q, Qian C, Zhang B. Statistical analysis and modeling of plug-in electric vehicle charging demand in distribution systems. 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP); 17-20 September 2017; San Antonio, TX, USAIEEE; 2017. p. 1–6. doi:10.1109/ISAP.2017.8071365
  • Tehrani NH, Wang P. Probabilistic estimation of plug-in electric vehicles charging load profile. Electric Power Syst Res. 2015;124:133–143. doi: 10.1016/j.epsr.2015.03.010
  • Pashajavid E, Golkar MA. Multivariate Stochastic Modeling of Plug-in Electric Vehicles Demand Profile Within Domestic Grid. Reliability Modeling and Analysis of Smart Power Systems. Springer; 2014. p. 101–116. https://link.springer.com/chapter/10.1007/978-81-322-1798-5_7
  • Pashajavid E, Golkar M. Non-Gaussian multivariate modeling of plug-in electric vehicles load demand. Int J Electr Power Energy Syst. 2014;61:197–207. doi: 10.1016/j.ijepes.2014.03.021
  • Rautiainen A, Repo S, Jarventausta P, et al. Statistical charging load modeling of PHEVs in electricity distribution networks using national travel survey data. IEEE Trans Smart Grid. 2012;3(4):1650–1659. doi: 10.1109/TSG.2012.2206411
  • Pareschi G, Küng L, Georges G, et al. Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data. Appl Energy. 2020;275:115318. doi: 10.1016/j.apenergy.2020.115318
  • Giorgio AD, Santis ED, Frettoni L, et al. Electric vehicle fast charging: a congestion-dependent stochastic Model predictive control under uncertain reference. Energies. 2023;16(3):1348. doi: 10.3390/en16031348
  • Town G, Taghizadeh S, Deilami S. Review of fast charging for electrified transport: demand, technology, systems, and planning. Energies. 2022;15(4):1276. doi: 10.3390/en15041276
  • Qian K, Zhou C, Allan M, et al. Modeling of load demand due to EV battery charging in distribution systems. IEEE Trans Power Syst. 2010;26(2):802–810. doi: 10.1109/TPWRS.2010.2057456
  • Shafiei M, Ghasemi-Marzbali A. Fast-charging station for electric vehicles, challenges and issues: a comprehensive review. J Energy Storage. 2022;49:104136. doi: 10.1016/j.est.2022.104136
  • Razmjoo A, Ghazanfari A, Jahangiri M, et al. A comprehensive study on the expansion of electric vehicles in Europe. Appl Sci. 2022;12(22):11656. doi: 10.3390/app122211656
  • Leijon J, Boström C. Charging electric vehicles today and in the future. World Electric Vehicle J. 2022;13(8):139. doi: 10.3390/wevj13080139
  • Meyer D, Wang J. Integrating ultra‐fast charging stations within the power grids of smart cities: a review. IET Smart Grid. 2018;1(1):3–10. doi: 10.1049/iet-stg.2018.0006
  • Sachan S, Deb S, Singh PP, et al. A comprehensive review of standards and best practices for utility grid integration with electric vehicle charging stations. Wiley Interdiscip Rev: Energy Environ. 2022;11(3):e424. doi: 10.1002/wene.424
  • Liu Z, Wu Q, Christensen L, et al. Driving pattern analysis of Nordic region based on national travel surveys for electric vehicle integration. J Mod Power Syst Clean Energy. 2015;3(2):180–189. doi: 10.1007/s40565-015-0127-x
  • Huang K, Zhao J, Sun X, et al. Analysis of optimal operation of charging stations based on dynamic target tracking of electric vehicles. Electronics. 2022;11(19):3175. doi: 10.3390/electronics11193175
  • Arsoon MM, Moghaddas-Tafreshi SM. Modeling data intrusion attacks on energy storage for vulnerability assessment of smart microgrid operation. 2021 11th Smart Grid Conference (SGC); 07-09 December 2021; Tabriz, Iran, Islamic Republic of. IEEE; 2021. 1–5.
  • Leou RC, Su CL, Lu CN. Stochastic analyses of electric vehicle charging impacts on distribution network. IEEE Trans Power Syst. 2014;29(3):1055–1063. doi: 10.1109/TPWRS.2013.2291556
  • Ronanki D, Kelkar A, Williamson SS. Extreme fast charging technology—prospects to enhance sustainable electric transportation. Energies. 2019;12(19):3721. doi: 10.3390/en12193721
  • Zheng L, Kandula RP, Divan D. Multiport control with partial power processing in solid-state transformer for PV, storage, and fast-charging electric vehicle integration. IEEE Trans Power Electron. 2023;38(2):2606–2616. doi: 10.1109/TPEL.2022.3211000
  • Valedsaravi S, El Aroudi A, Martínez-Salamero L. Review of solid-state transformer applications on electric vehicle DC ultra-fast charging station. Energies. 2022;15(15):5602. doi: 10.3390/en15155602

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.