6,024
Views
4
CrossRef citations to date
0
Altmetric
Articles

Protective and curative role of Spirulina platensis extracts on cisplatin induce acute kidney injury in rats

, , , , &
Pages 54-67 | Received 03 Apr 2019, Accepted 03 Aug 2019, Published online: 03 Sep 2019

References

  • Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756–766.
  • Chertow GM, Levy EM, Hammermeister KE, et al. Independent association between acute renal failure and mortality following cardiac surgery 12. Am J Med. 1998;104(4):343–348.
  • Ramesh G, Reeves WB. Inflammatory cytokines in acute renal failure. Kidney Int. 2004;66:S56–S61.
  • Tadagavadi RK, Gao G, Wang WW, et al. Dendritic cell protection from cisplatin nephrotoxicity is independent of neutrophils. Toxins (Basel). 2015;7(8):3245–3256.
  • Bhat ZY, Cadnapaphornchai P, Ginsburg K, et al. Understanding the risk factors and long-term consequences of cisplatin-associated acute kidney injury: an observational cohort study. PloS One. 2015;10(11):e0142225.
  • Jakob S, Arnold W, Marti H-P. Progressive renal failure after cisplatin therapy. Nephrol Dialysis Transplantation. 1996;11(2):370–373.
  • Latcha S, Jaimes EA, Patil S, et al. Long–term renal outcomes after cisplatin treatment. Clin J Am Soc Nephrol. 2016;11(7):1173–9. CJN. 08070715.
  • Troxell ML, Higgins JP, Kambham N. Antineoplastic Treatment and renal injury: an update on renal pathology due to cytotoxic and targeted therapies. Adv Anat Pathol. 2016;23(5):310–329.
  • Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. BioMed Res Int. 2014.
  • Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994–1007.
  • Ali BH, Al Moundhri MS. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol. 2006;44(8):1173–1183.
  • Kuriakose GC, Kurup MG. Evaluation of renoprotective effect of Aphanizomenon flos-aquae on cisplatin-induced renal dysfunction in rats. Ren Fail. 2008;30(7):717–725.
  • Chu W-L, Lim Y-W, Radhakrishnan AK, et al. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals. BMC Complement Altern Med. 2010;10(1):53.
  • Rodríguez-Salgueiro S, Ramírez-Carmenate Z, González-Núñez L. An update on potential applications of Spirulina sp. and C-phycocyanin to treat kidney diseases. Ann Res Antioxid. 2017;2:1.
  • Ferreira-Hermosillo A, Torres-Durán P, Shamosh-Halabe S, et al. Biological effects of Spirulina and current research on its antioxidant activity. Toctli RICTB. 2011;2(1):1–13.
  • Hoseini S, Khosravi-Darani K, Mozafari M. Nutritional and medical applications of spirulina microalgae. Mini Rev Med Chem. 2013;13(8):1231–1237.
  • Abdel-Daim MM, Abuzead SM, Halawa SM. Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. PloS One. 2013;8(9):e72991.
  • Gargouri M, Ghorbel-Koubaa F, Bonenfant-Magné M, et al. Spirulina or dandelion-enriched diet of mothers alleviates lead-induced damages in brain and cerebellum of newborn rats. Food Chem Toxicol. 2012;50(7):2303–2310.
  • Wu Q, Liu L, Miron A, et al. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol. 2016;90(8):1817–1840.
  • Hemalatha K, Pugazhendy K, Jayachandran K, et al. Studies on the protective efficacy of Spirulina against lead acetate induced hepatotoxicity in Rattus norvegicus. group. 2012;2(3.17):0.15.
  • Ayehunie S, Belay A, Baba TW, et al. Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). J Acquir Immune Defic Syndr Hum Retrovirol. 1998;18(1):7–12.
  • Gutiérrez-Salmeán G, Fabila-Castillo L, Chamorro-Cevallos G. Aspectos nutricionales y toxicológicos de Spirulina (arthrospira). Nutricion Hospitalaria. 2015;32(1):34–40.
  • Gargouri M, Saad HB, Amara IB, et al. Spirulina exhibits hepatoprotective effects against lead induced oxidative injury in newborn rats. Cell Mol Biol. 2016;62(10):85–93.
  • Medeiros M, Sharma V, Ding R, et al. Optimization of RNA yield, purity and mRNA copy number by treatment of urine cell pellets with RNAlater. J Immunol Methods. 2003;279(1–2):135–142.
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29(9):e45–e45.
  • Linkermann A, Bräsen JH, Darding M, et al. Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury. Proc Nat Acad Sci. 2013;110(29):12024–12029.
  • Linkermann A, De Zen F, Weinberg J, et al. Programmed necrosis in acute kidney injury. Nephrol Dialysis Transplantation. 2012;27(9):3412–3419.
  • Kim J, Long KE, Tang K, et al. Poly (ADP-ribose) polymerase 1 activation is required for cisplatin nephrotoxicity. Kidney Int. 2012;82(2):193–203.
  • Kalpana C, Sudheer A, Rajasekharan K, et al. Comparative effects of curcumin and its synthetic analogue on tissue lipid peroxidation and antioxidant status during nicotine-induced toxicity. Singapore Med J. 2007;48(2):124.
  • Ugur S, Ulu R, Dogukan A, et al. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren Fail. 2015;37(2):332–336.
  • Topcu-Tarladacalisir Y, Sapmaz-Metin M, Karaca T. Curcumin counteracts cisplatin-induced nephrotoxicity by preventing renal tubular cell apoptosis. Ren Fail. 2016;38(10):1741–1748.
  • Palipoch S, Punsawad C, Koomhin P, et al. Hepatoprotective effect of curcumin and alpha-tocopherol against cisplatin-induced oxidative stress. BMC Complement Altern Med. 2014;14(1):111.
  • Shimeda Y, Hirotani Y, Akimoto Y, et al. Protective effects of capsaicin against cisplatin-induced nephrotoxicity in rats. Biol Pharm Bull. 2005;28(9):1635–1638.
  • Matsushima H, Yonemura K, Ohishi K, et al. The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J Lab Clin Med. 1998;131(6):518–526.
  • Nagai J, Takano M. Molecular aspects of renal handling of aminoglycosides and strategies for preventing the nephrotoxicity. Drug Metab Pharmacokinet. 2004;19(3):159–170.
  • Sasaki D, Yamada A, Umeno H, et al. Comparison of the course of biomarker changes and kidney injury in a rat model of drug-induced acute kidney injury. Biomarkers. 2011;16(7):553–566.
  • Xie H-G, Wang S-K, Cao -C-C, et al. Qualified kidney biomarkers and their potential significance in drug safety evaluation and prediction. Pharmacol Ther. 2013;137(1):100–107.
  • Dieterle F, Sistare F, Goodsaid F, et al. Renal biomarker qualification submission: a dialog between the FDA-EMEA and predictive safety testing consortium. Nat Biotechnol. 2010;28(5):455.
  • Kuhad A, Tirkey N, Pilkhwal S, et al. Renoprotective effect of Spirulina fusiformis on cisplatin-induced oxidative stress and renal dysfunction in rats. Ren Fail. 2006;28(3):247–254.
  • Segelov E, Mann G, Harnett PR. Mechanisms determining sensitivity to cisplatin in three mutant Chinese hamster ovary cell lines. Mutat Res/DNA Repair. 1998;407(3):243–252.
  • Simsek N, Karadeniz A, Kalkan Y, et al. Spirulina platensis feeding inhibited the anemia-and leucopenia-induced lead and cadmium in rats. J Hazard Mater. 2009;164(2–3):1304–1309.
  • Wada Y, Iyoda M, Matsumoto K, et al. Epidermal growth factor receptor inhibition with erlotinib partially prevents cisplatin-induced nephrotoxicity in rats. PloS One. 2014;9(11):e111728.
  • Humanes B, Lazaro A, Camano S, et al. Cilastatin protects against cisplatin-induced nephrotoxicity without compromising its anticancer efficiency in rats. Kidney Int. 2012;82(6):652–663.
  • Kitada M, Kume S, Takeda-Watanabe A, et al. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci. 2013;124(3):153–164.
  • Vaziri H, Dessain SK, Eaton EN, et al. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. cell. 2001;107(2):149–159.
  • Hasegawa K, Wakino S, Yoshioka K, et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J Biol Chem. 2010;285(17):13045–13056.