954
Views
2
CrossRef citations to date
0
Altmetric
Articles

Molecular and phytochemical assessment for some seedy strains of Alamar apricot rootstock under salinity stress

, &
Pages 173-186 | Received 22 Oct 2019, Accepted 05 Nov 2019, Published online: 17 Nov 2019

References

  • Layne REC, Bailey CH, Hough LF. Apricots. In: Janick J, Moore JN, editors. Fruit breedings .I. Tree and tropical fruits. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley and Sons Inc; 1996. p. 79–109.
  • FAO. Crops and drops. Making the best use of water for agriculture. Roma: Food and Agriculture Organization of The United Nations; 2002. p. 26.
  • Sengupta S, Majumder AL. Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta. 2009;229:911–992.
  • Gorai M, Neffati M. Germination responses of Reaumuria vermiculatato salinity and temperature. Ann Appl Biol. 2007;151:53–59.
  • Rengasamy P. World salinization with emphasis on Australia. J Exp Bot. 2006;57:1017–1023.
  • Frommer WB, Ludewig U, Rentsch D. Taking transgenic plants with a pinch of salt. Science. 1999;285:1222–1223.
  • Celik O, Atak C. Evaluation of proline accumulation and Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene expression during salinity stress in two soybean (Glycine max L. Merr.) varieties. Pol J Environ Stud. 2012;3(21):559–564.
  • Mohamed SY, Shoaib RM, Gadalla NO. Selection of some seedling apricot strains at Alamar Region. J Appl Sci. 2015;15(2):195–204.
  • Zhang J, Xie W, Wang Y, et al. Potential of start codon targeted (SCoT) markers to estimate genetic diversity and relationships among Chinese Elymus sibiricus accessions. Molecules. 2015;20(4):5987–6001.
  • Etminan A, Pour-Aboughadareh A, Mohammadi R, et al. Applicability of start codon targeted (SCoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes. Biotechnol Equip. 2016;30(6):1075–1081.
  • Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification’. Genomics. 1994;20:176–183.
  • Kantety RV, Zeng XP, Bennetzen JL, et al. Assessment of genetic diversity in dent and popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification. Mol Breed. 1995;1:365–373.
  • Guo L, Li H, Luoa Z. New insights into the genetic diversity and species identification of the native apricots in Southern Xinjiang of China. Genet Mol Res. 2018;17(1):16039874.
  • Joshi CP, Zhou H, Huang X, et al. Context sequences of translation initiation codon in plants. Plant Mol Biol. 1997;35:993–1001.
  • Sawant SV, Singhl PK, Gupta SK, et al. Conserved nucleotide sequences in highly expressed genes in plants. J Genet. 1999;78:123–131.
  • Collard BCY, Mackill DJ. Start Codon Targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep. 2009;27:86–93.
  • Aswathy L, Jisha RS, Masand VH. Computational strategies to antimalarial thiazine alkaloid lead compounds based on an Australian marine sponge Plakortislita. J Biomol Struct Dyn. 2017;35(11):2407–2429.
  • Gorji AM, Poczai P, Polgar Z, et al. Efficiency of arbitrarily amplified dominant markers (SCOT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am J Pot Res. 2011;88:226–237.
  • Knoch E, Dilokpimol A, Geshi N. Arabinogalactan proteins: focus on carbohydrate active enzymes. Front Plant Sci. 2014;5:189–198.
  • Kishor PBK, Reenivasulu NS. Is proline accumulation per se correlated with stress tolerance or is proline homoeostasis a more critical issue. Plant Cell Environ. 2014;37:300–311.
  • Signorelli S, Monza J. Identification of Δ1-pyrroline 5-carboxylate synthase (P5CS) genes involved in the synthesis of proline in Lotus japonicus. Plant Signal Behav. 2017 Nov 2;12(11):e1367464. doi: 10.1080/15592324.2017.1367464. Epub 2017 Oct 6. PMID: 28985146; PMCID: PMC5703238
  • Shin H, Oh S, Arora R, et al. Proline accumulation in response to high temperature in winter-acclimated shoots of Prunus persica: a response associated with growth resumption or heat stress. Can J Plant Sci. 2016;96(4):630–638.
  • Rickes, Leticia Neutzling et al. Differential expression of the genes involved in responses to water-deficit stress in peach trees cv. Chimarrita grafted onto two different rootstocks. Bragantia. 2019;78(1): 60–70. ISSN 0006-8705. doi: 10.1590/1678-4499.2017372.
  • Hmida-Sayari A, Gargoui-Bouzid R, Bidani A, et al. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci. 2005;169:746–752.
  • Ghanti KKS, Sujata KG, Vijay BM, et al. Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biol Plant. 2011;55:634–640.
  • Bolat I, Dikilitas M, Ikinci A, et al. Morphological, physiological, biochemical characteristics and bud success responses of myrobolan 29 c plum rootstock subjected to water stress. Can J Plant Sci. 2016;96:485–493.
  • Kharusi LA, Al Yahyai R, Yaish MW. Antioxidant response to salinity in salt-tolerant and salt-susceptible cultivars of date palm. Agriculture. 2019;9(1):8.
  • Abou El-Khashab AM, El-Sammak AF, Elaidy AA. Paclobutrazol reduces some negative effects of salt stress in peach. J Am Soc Hortic Sci. 1996;122(1):43–46.
  • Sasaki T, Song J, Koga-Ban Y, et al. Towards cataloguing all rice genes: large-scale sequencing of randomly chosen rice cDNAs from a callus cDNA library. Plant J. 1994;6:615–624.
  • Fathi MA, Hussein SHM, Mohamed SY. Horticultural and molecular genetic evaluation of some peach selected strains cultivated under kalubiah governorate conditions. J Am Sci. 2013;9(1s):12–23.
  • Xiong FQ, Zhong RC, Han ZQ, et al. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol Biol Rep. 2011;38:3487–3494.
  • Adhikari S, Saha S, Bandyopadhyay TK, et al. Efficiency of ISSR marker for characterization of Cymbopogon germplasm and their suitability in molecular barcoding. Plant Syst Evaluation. 2015;301:439–450.
  • Prevost A, Wilkinson MJ. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet. 1999;98:107–112.
  • Nei M, Li WH. Mathematical model for studing genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci, USA. 1979;76:5269–5273.
  • Kumar V, Sharma R, Trivedi PC, et al. Traditional and novel references towards systematic normalization of qRT PCR data in plants. Aust J Crop Sci. 2011;5(11):1455–1468.
  • Livak KJ, Schmittgen TD. Analysis of RELATIVE GENE EXPRESSION DATA USING REAL-TIME QUANTITative PCR and the 2−∆∆CT method. Methods. 2001;25(4):402–408.
  • Youssef K, Sanzanib SM, Ligoriob A, et al. Sodium carbonate and bicarbonate treatments induce resistance to postharvest green mould on citrus fruit. Postharvest Biol Technol. 2014;87:61–69.
  • Bates L, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant Soil. 1973;39:205–207.
  • Marin JA, Andreu P, Carrasco A, et al. Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of fruit tree rootstocks under salt stress. Revue Des Régions Arides. 2010;2(4):722–727.
  • Prieto P, Pined AM, Anguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a Phosphomolybdenum Complex: specific application to the determination of Vitamin E. Anal Biochem. 1999;269:337–341.
  • Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenoicls and other oxidation substances and antioxidants by means of FolinCiocalteu reagent. Methods Enzymol. 1999;299:152–178.
  • Woisky RG, Salation A. Analysis of propolis: some parameters and procedures for chemical quality control. J Apiculatural Res. 1998;37:99–105.
  • Abd El-Aziz MH, Rehab MMH. Molecular assessment of genetic diversity in some canola homozygous lines. Egypt J Genet Cytol. 2016;45:129–145.
  • Abd El-Aziz MH, Farid SM, Sara AA, et al. Evaluation of molecular and phenotypic diversity in relation to heterosis in some toma to lines under different climatic conditions. J Agric Chem Biotechn. 2016;7(5):141–151. Mansoura Univ.
  • Abd El-Hadi AH, Abd El-Aziz MH, AbdAlla MA, et al. Molecular and phenotypic evaluation of some summer squash inbred lines. J Agric Chem Biotechn. 2017;8(12):581–587. Mansoura Univ.
  • Hajibarat Z, Saidi A, Hajibarat Z, et al. Characterization of genetic diversity in chickpea using SSR markers, Start Codon Targeted Polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP). Physiol Mol Biol Plants. 2015;21(3):365–373.
  • Baghizadeha A, Dehghanb E. Efficacy of SCoT and ISSR markers in assessment of genetic diversity in some Iranian pistachio (Pistaciavera L.) cultivars. Pistachio Health J. 2018;1(1):37–43.
  • Xanthopoulou A, Ganopoulos I, Kalivas A, et al. Comparative analysis of genetic diversity in Greek Genebank collection of summer squash (Cucurbita pepo) landraces using start codon targeted (SCoT) polymorphism and ISSR markers. Aust J Crop Sci. 2015;9(1):14–21.
  • Abdel-Lateif KS, Hewedy OA. Genetic diversity among Egyptian wheat cultivars using SCoT and ISSR markers. SABRAO J Breed Genet. 2018;50(1):36–45.
  • Al-Qurainy F, Khan S, Nadeem M, et al. Antioxidant system response and cDNA-SCoT marker profiling in Phoenix dactylifera L. Int J Genomics. 2017;10. ID 1537538. DOI:10.1155/2017/1537538.
  • Agastian P, Kingsley SJ, Vivekanandan M. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica. 2000;38:287– 290.
  • Shigeoka S, Ishikawa T, Tamoi M, et al. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot. 2002;53:1305–1319.
  • Parida AK, Das AB, Mohanty P. Investigations on the antioxidative defense responses to NaCl stress in a mangrove, Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regul. 2004;42:213–226.
  • Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005;444:139–158.
  • Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103:551–560.
  • Yuan G, Wang X, Guo R, et al. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem. 2010;121:1014–1019.
  • Rezazadeh A, Ghasemneshaz A, Barani M, et al. Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Res J Med Plant. 2012;6:245–252.