1,666
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Adansonia digitata ameliorates lead-induced memory impairments in rats by reducing glutamate concentration and oxidative stress

, , , &
Pages 1-10 | Received 03 Aug 2021, Accepted 19 Nov 2021, Published online: 30 Dec 2021

References

  • Omamuyovwi MI, Stephen OO, Olayemi KI, et al. Sub-acute nickel exposure impairs behavior, alters neuronal microarchitecture, and induces oxidative stress in rats’ brain. Drug Chem Toxicol. 2018. DOI:10.1080/01480545.2018.1437173
  • Pramod KS, Manish KS, Rajesh SY, et al. Omega-3 fatty acid attenuates oxidative stress in cerebral cortex, cerebellum, and hippocampus tissue and improves neurobehavioral activity in chronic lead-induced neurotoxicity. Nutr Neurosci. 2017. DOI:10.1080/1028415X.2017.1354542.
  • Mahmoud YI, Sayed SS. Effects of L-cysteine on lead acetate induced neurotoxicity in albino mice. Biotech Histochem. 2016;91(5):327–332.
  • Liu J, Lewis G. Environmental toxicity and poor cognitive outcomes in children and adults. J Environ Health. 2014;76(6):130–138.
  • Lidia S, Małgorzata C, Grzegorz S. The role of astroglia in Pb-exposed adult rat brain with respect to glutamate toxicity. Toxicology. 2005;212(2–3):185–194.
  • Hamid AS, Gamal SA, Hesham NM, et al. Thymoquinone ameliorates oxidative damage and histopathological changes of developing brain neurotoxicity. J Histotechnol. 2019. DOI:10.1080/01478885.2019.1619654.
  • Bokara KK, Blaylock L, Denise SB, et al. Influence of lead acetate on glutathione and its related enzymes in different regions of rat brain. J Appl Toxicol. 2009;29(5):452–458.
  • Omobowale TO, Oyagbeml AA, Akinrinde AS, et al. Failure of recovery from lead induced hepatotoxicity and disruption of erythrocyte antioxidant defense system in Wistar rats. Environ Toxicol Pharmacol. 2014;37(3):1202–1211.
  • Bokara KK, Brown E, Mc Cormick R, et al. Lead induced increase in antioxidant enzymes and lipid peroxidation products in developing rat brain. Biometals. 2008;21:9–16.
  • Lee JC, Son YO, Pratheeshkumar P, et al. Oxidative stress and metal carcinogenesis. Free Radic Biol Med. 2012;53(4):742–757.
  • Mousa AM, Al-Fadhli AS, Rao MS, et al. Gestational lead exposure induces developmental abnormalities and up regulates apoptosis of fetal cerebellar cells in rats. Drug Chem Toxicol. 2015;38(1):73–83.
  • Mujaibel LM, Kilarkaje N. Mitogen activated protein kinase signaling and its association with oxidative stress and apoptosis in lead exposed hepatocytes. Environ Toxicol. 2015;30(5):513–529.
  • Djebli N, Slimani M, Aoues A. Effect of lead exposure on dopaminergic transmission in the rat brain. Toxicology. 2005;28207(3):363–368.
  • Garcia-Arenaz G, Ramirez-Amaya V, Balderas I, et al. Cognitive deficits in adult rats by lead intoxication are related with regional specific inhibition of cNOS. Behav Brain Res. 2004;149:49–59.
  • Sharifi AM, Baniasadi S, Jorjani M, et al. Investigation of acute lead poisoning on apoptosis in rat hippocampus in vivo. Neurosci Lett. 2002;329(1):45–48.
  • Vazquez A, Pena de Ortiz S. Lead (Pb2+) impairs long-term memory and blocks learning-induced increases in hippocampal protein kinase C activity. Toxicol Appl Pharmacol. 2004;200:27–39.
  • Melone M, Bellesi M, Conti F. Synaptic localization of GLT-1a in the rat somatic sensory cortex. Glia. 2009;57(1):108–117.
  • Guerriero RM, Giza CC, Rotenberg A. Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep. 2015;15(5):27.
  • Paula-Lima AC, Brito-Moreira J, Ferreira ST. Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer’s disease. J Neurochem. 2013;126(2):191–202.
  • Featherstone RE, Shin R, Kogan JH, et al. Mice with subtle reduction of NMDA NR1 receptor subunit expression have a selective decrease in mismatch negativity: implications for schizophrenia prodromal population. Neurobiol Dis Elsevier B.V 2015;73:289–295.
  • Jitin R, Manish KJ, Shishu PS, et al. Adansonia digitata L. (baobab): a review of traditional information and taxonomic description. Asian Pac J Tropical Biomedicine. 2015;5(1):79–84.
  • Ayat AA, Shimaa AA, Sahar HE, et al. The effect of blending of extracts of Sudanese Adansonia digitata and Tamarindus indica on their antioxidant, anti-inflammatory and antimicrobial activities. J Pharmacogn Phytother. 2019;11(2):28–34.
  • Mona AG, Amal IH, Manal GM, et al. Protective effect of Adansonia digitata against isoproterenol-induced myocardial injury in rats. Anim Biotechnol. 2016;27(2):84–95.
  • Keyla R, Margarida M, Ana P, et al. Effect of Adansonia digitata L.fruit on postprandial glycaemia in nondiabetic adults. Ann Med. 2019;51(1):159.
  • Monica HC, Bente LH, Kari H, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9(3):16.
  • Kaur C, Kapoor HC. Antioxidants in fruits and vegetables-the Millennium’s health. Int J Food Sci Technol. 2001;36:703–725.
  • Salisu MH, Raji I, Musa A, et al. Amelioration of lead toxicity in selected organs and tissue of wistar rats using resveratrol. Dutse J Pure Appl Sci. 2020;6:1.
  • Muhammad IU, Jarumi IK, Alhassan AJ, et al. Acute toxicity and hypoglycemic activity of aqueous fruit pulp extract of Adansonia digitata L. (Afpead) on Alloxan induced diabetic rats. Journal of Adv Med Pharm Sci. 2016;6(3):1–6.
  • Drapeau E, Mayo W, Aurousseau C, et al. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Nat Acadamy Sci: Elodie Drapeau. 2003;100(24):14385–14390.
  • Maryam B, Iran G, Kataneh A, et al. Effect of postnatal chronic lead exposure on spatial learning and memory in male rat. Zahedan J Res Med Sci. 2015;17(9):1050.
  • Nunez J. Morris water maze experiment. JoVE. 19. 2008 Accessed20 05 2020. http://www.jove.com/index/Details.stp?ID=897
  • Suvarna SK, Layton C, Bancroft JD. Bancroft’s theory and practice of histological techniques. 7th ed. Nottingham: Churchill Livingstone; 2013.
  • Yan L, Jianli Y, Yaowen C, et al. Hippocampal neurochemical changes in senescent mice induced with chronic injection of D-Galactose and NaNO2: an in vitro high-resolution NMR spectroscopy. PLoS ONE. 2014;9(2):e88562.
  • Farombi EO, Tahnteng JG, Agboola AO. Chemoprevention of 2-acetylaminofluoreneinduced hepatotoxicity and lipid peroxidation in rats by kolaviron - a Garcinia kola seed extract. Food Chem Toxicol. 2000;38(6):535–541.
  • Clairborne A. Catalase activity. In: Greewald AR, editor. Handbook of methods for oxygen radical research. Boca Raton (Florida): CRC; 1995. p. 237–242.
  • Rotruck JT, Pope AL, Ganther HE, et al. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179(4073):588–590.
  • Misra HP, Fridovich I. The role of superoxide anion in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–3175 Accessed04 03 2021.
  • Sheharbano B, Syed -Adnan AS, Touqeer A, et al. Neuroprotective effects of Foeniculum vulgare seeds extract on lead-induced neurotoxicity in mice brain. Drug Chem Toxicol. 2018. DOI:10.1080/01480545.2018.1459669
  • Zohreh D, Mahdi P, Maryam GK, et al. Arbutin reduces cognitive deficit and oxidative stress in animal model of Alzheimer’s disease. Int J Neurosci. 2019. DOI:10.1080/00207454.2019.1638376.
  • Al Omar SY, Alkhuriji AF, Ahmed EA, et al. The neuroprotective role of Coenzyme Q10 against lead acetate-induced neurotoxicity is mediated by antioxidant, anti-inflammatory and anti-apoptotic activities. Int J Environ Res Public Health. 2019;16:2895.
  • Lopes AC, Peixe TS, Mesas AE, et al. Lead exposure and oxidative stress: a systematic review. Rev Environ Contam Toxicol. 2016;236:193–238.
  • Valencia F, Dilip S, Kiran K, et al. Neuroprotective effects of Silibinin: an in-silico and in-vitro study. Int J Neurosci. 2018. DOI:10.1080/00207454.2018.1443926
  • Mi Hye K, Ju-Sik M, Joon YL, et al. Oleuropein isolated from Fraxinus rhynchophylla inhibits glutamate-induced neuronal cell death by attenuating mitochondrial dysfunction. Nutr Neurosci. 2017. DOI:10.1080/1028415X.2017.1317449.
  • Kritis AA, Stamoula EG, Paniskaki KA, et al. Researching glutamate-induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci. 2015;9:91.
  • Arne S, Susanna S, Lasse KB, et al. Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol. 2014;11:13–30.
  • Kandel E. Principles of Neural Science. Vol. 5. Kandel ER, Schwartz JH, and Jessell TM, et al. (Editors), McGraw Hill Professional. 2013:210–306 Accessed04 03 2021.
  • Zhou Y, Danbolt NC. GABA and glutamate transporters in brain. Front Endocrinol (Lausanne). 2013;4(165):1–14.
  • Phan CW, David P, Naidu M, et al. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol. 2015;35(3):355–368.